Spaces:
Sleeping
Sleeping
File size: 5,257 Bytes
0666166 8789461 c666373 8789461 c666373 acf9f46 8789461 c666373 acf9f46 c666373 5f5775f c2cea5f c666373 c2cea5f b660e9c 5f5775f b660e9c 5f5775f acf9f46 c666373 bb13609 5f5775f 0666166 c666373 0666166 acf9f46 c666373 acf9f46 c666373 0666166 c666373 acf9f46 e4ea851 5f5775f acf9f46 c2cea5f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 |
import gradio as gr
import torch
from transformers import ViTForImageClassification, ViTFeatureExtractor
from transformers import AutoModelForImageClassification, AutoFeatureExtractor
from PIL import Image
# Load crop disease model (ViT)
model = ViTForImageClassification.from_pretrained("iamomtiwari/VITPEST")
feature_extractor = ViTFeatureExtractor.from_pretrained("iamomtiwari/VITPEST")
# Load fallback model (ResNet50 for general image classification)
fallback_model = AutoModelForImageClassification.from_pretrained("microsoft/resnet-50")
fallback_feature_extractor = AutoFeatureExtractor.from_pretrained("microsoft/resnet-50")
# Load additional ViT model (221k model) for a different classification if the user feedback is "no"
vit_221k_model = ViTForImageClassification.from_pretrained("google/vit-base-patch16-224-in21k")
vit_221k_feature_extractor = ViTFeatureExtractor.from_pretrained("google/vit-base-patch16-224-in21k")
# Define class labels with treatment advice
class_labels = {
1: {"label": "Stage Corn___Common_Rust", "treatment": "Apply fungicides as soon as symptoms are noticed. Practice crop rotation and remove infected plants."},
2: {"label": "Stage Corn___Gray_Leaf_Spot", "treatment": "Rotate crops to non-host plants, apply resistant varieties, and use fungicides as needed."},
3: {"label": "Stage safe Corn___Healthy", "treatment": "Continue good agricultural practices: ensure proper irrigation, nutrient supply, and monitor for pests."},
4: {"label": "Stage Corn___Northern_Leaf_Blight", "treatment": "Remove and destroy infected plant debris, apply fungicides, and rotate crops."},
5: {"label": "Stage Rice___Brown_Spot", "treatment": "Use resistant varieties, improve field drainage, and apply fungicides if necessary."},
6: {"label": "Stage safe Rice___Healthy", "treatment": "Maintain proper irrigation, fertilization, and pest control measures."},
7: {"label": "Stage Rice___Leaf_Blast", "treatment": "Use resistant varieties, apply fungicides during high-risk periods, and practice good field management."},
8: {"label": "Stage Rice___Neck_Blast", "treatment": "Plant resistant varieties, improve nutrient management, and apply fungicides if symptoms appear."},
9: {"label": "Stage Sugarcane__Bacterial Blight", "treatment": "Use disease-free planting material, practice crop rotation, and destroy infected plants."},
10: {"label": "Stage safe Sugarcane__Healthy", "treatment": "Maintain healthy soil conditions and proper irrigation."},
11: {"label": "Stage Sugarcane__Red_Rot", "treatment": "Plant resistant varieties and ensure good drainage."},
12: {"label": "Stage Wheat___Brown_Rust", "treatment": "Apply fungicides and practice crop rotation with non-host crops."},
13: {"label": "Stage safe Wheat___Healthy", "treatment": "Continue with good management practices, including proper fertilization and weed control."},
14: {"label": "Stage Wheat___Yellow_Rust", "treatment": "Use resistant varieties, apply fungicides, and rotate crops."}
}
# Mapping label indices to class labels
labels_list = [class_labels[i]["label"] for i in range(1, 15)]
# Inference function
def predict(image, feedback):
# First, use the crop disease model (ViT)
inputs = feature_extractor(images=image, return_tensors="pt")
with torch.no_grad():
outputs = model(**inputs)
predicted_class_idx = outputs.logits.argmax(-1).item()
# Check if the predicted label corresponds to a crop disease
predicted_label = labels_list[predicted_class_idx]
# If the feedback is "no", switch to ViT 221k model for a different class prediction
if feedback == "no":
# Use ViT 221k model
inputs_vit_221k = vit_221k_feature_extractor(images=image, return_tensors="pt")
with torch.no_grad():
outputs_vit_221k = vit_221k_model(**inputs_vit_221k)
predicted_class_idx_vit_221k = outputs_vit_221k.logits.argmax(-1).item()
# Get the ViT 221k prediction label
vit_221k_label = vit_221k_model.config.id2label[predicted_class_idx_vit_221k]
return f"Fallback ViT 221k Prediction: {vit_221k_label}"
# If feedback is "yes", return the initial disease prediction and treatment advice
if predicted_class_idx < len(class_labels): # It's a crop disease
treatment_advice = class_labels[predicted_class_idx + 1]["treatment"]
return f"Disease: {predicted_label}\n\nTreatment Advice: {treatment_advice}"
else:
# If not a crop disease, use the fallback model (ResNet50) for general object detection
inputs_fallback = fallback_feature_extractor(images=image, return_tensors="pt")
with torch.no_grad():
outputs_fallback = fallback_model(**inputs_fallback)
predicted_class_idx_fallback = outputs_fallback.logits.argmax(-1).item()
# Get the fallback prediction label
fallback_label = fallback_model.config.id2label[predicted_class_idx_fallback]
return f"Fallback Prediction (Not a Crop): {fallback_label}"
# Create Gradio Interface
interface = gr.Interface(
fn=predict,
inputs=["image", gr.Radio(["yes", "no"], label="Is the prediction correct?")],
outputs="text"
)
interface.launch()
|