VITDET / app.py
iamomtiwari's picture
Update app.py
acf9f46 verified
raw
history blame
5.26 kB
import gradio as gr
import torch
from transformers import ViTForImageClassification, ViTFeatureExtractor
from transformers import AutoModelForImageClassification, AutoFeatureExtractor
from PIL import Image
# Load crop disease model (ViT)
model = ViTForImageClassification.from_pretrained("iamomtiwari/VITPEST")
feature_extractor = ViTFeatureExtractor.from_pretrained("iamomtiwari/VITPEST")
# Load fallback model (ResNet50 for general image classification)
fallback_model = AutoModelForImageClassification.from_pretrained("microsoft/resnet-50")
fallback_feature_extractor = AutoFeatureExtractor.from_pretrained("microsoft/resnet-50")
# Load additional ViT model (221k model) for a different classification if the user feedback is "no"
vit_221k_model = ViTForImageClassification.from_pretrained("google/vit-base-patch16-224-in21k")
vit_221k_feature_extractor = ViTFeatureExtractor.from_pretrained("google/vit-base-patch16-224-in21k")
# Define class labels with treatment advice
class_labels = {
1: {"label": "Stage Corn___Common_Rust", "treatment": "Apply fungicides as soon as symptoms are noticed. Practice crop rotation and remove infected plants."},
2: {"label": "Stage Corn___Gray_Leaf_Spot", "treatment": "Rotate crops to non-host plants, apply resistant varieties, and use fungicides as needed."},
3: {"label": "Stage safe Corn___Healthy", "treatment": "Continue good agricultural practices: ensure proper irrigation, nutrient supply, and monitor for pests."},
4: {"label": "Stage Corn___Northern_Leaf_Blight", "treatment": "Remove and destroy infected plant debris, apply fungicides, and rotate crops."},
5: {"label": "Stage Rice___Brown_Spot", "treatment": "Use resistant varieties, improve field drainage, and apply fungicides if necessary."},
6: {"label": "Stage safe Rice___Healthy", "treatment": "Maintain proper irrigation, fertilization, and pest control measures."},
7: {"label": "Stage Rice___Leaf_Blast", "treatment": "Use resistant varieties, apply fungicides during high-risk periods, and practice good field management."},
8: {"label": "Stage Rice___Neck_Blast", "treatment": "Plant resistant varieties, improve nutrient management, and apply fungicides if symptoms appear."},
9: {"label": "Stage Sugarcane__Bacterial Blight", "treatment": "Use disease-free planting material, practice crop rotation, and destroy infected plants."},
10: {"label": "Stage safe Sugarcane__Healthy", "treatment": "Maintain healthy soil conditions and proper irrigation."},
11: {"label": "Stage Sugarcane__Red_Rot", "treatment": "Plant resistant varieties and ensure good drainage."},
12: {"label": "Stage Wheat___Brown_Rust", "treatment": "Apply fungicides and practice crop rotation with non-host crops."},
13: {"label": "Stage safe Wheat___Healthy", "treatment": "Continue with good management practices, including proper fertilization and weed control."},
14: {"label": "Stage Wheat___Yellow_Rust", "treatment": "Use resistant varieties, apply fungicides, and rotate crops."}
}
# Mapping label indices to class labels
labels_list = [class_labels[i]["label"] for i in range(1, 15)]
# Inference function
def predict(image, feedback):
# First, use the crop disease model (ViT)
inputs = feature_extractor(images=image, return_tensors="pt")
with torch.no_grad():
outputs = model(**inputs)
predicted_class_idx = outputs.logits.argmax(-1).item()
# Check if the predicted label corresponds to a crop disease
predicted_label = labels_list[predicted_class_idx]
# If the feedback is "no", switch to ViT 221k model for a different class prediction
if feedback == "no":
# Use ViT 221k model
inputs_vit_221k = vit_221k_feature_extractor(images=image, return_tensors="pt")
with torch.no_grad():
outputs_vit_221k = vit_221k_model(**inputs_vit_221k)
predicted_class_idx_vit_221k = outputs_vit_221k.logits.argmax(-1).item()
# Get the ViT 221k prediction label
vit_221k_label = vit_221k_model.config.id2label[predicted_class_idx_vit_221k]
return f"Fallback ViT 221k Prediction: {vit_221k_label}"
# If feedback is "yes", return the initial disease prediction and treatment advice
if predicted_class_idx < len(class_labels): # It's a crop disease
treatment_advice = class_labels[predicted_class_idx + 1]["treatment"]
return f"Disease: {predicted_label}\n\nTreatment Advice: {treatment_advice}"
else:
# If not a crop disease, use the fallback model (ResNet50) for general object detection
inputs_fallback = fallback_feature_extractor(images=image, return_tensors="pt")
with torch.no_grad():
outputs_fallback = fallback_model(**inputs_fallback)
predicted_class_idx_fallback = outputs_fallback.logits.argmax(-1).item()
# Get the fallback prediction label
fallback_label = fallback_model.config.id2label[predicted_class_idx_fallback]
return f"Fallback Prediction (Not a Crop): {fallback_label}"
# Create Gradio Interface
interface = gr.Interface(
fn=predict,
inputs=["image", gr.Radio(["yes", "no"], label="Is the prediction correct?")],
outputs="text"
)
interface.launch()