Spaces:
Sleeping
Sleeping
import gradio as gr | |
import torch | |
from transformers import ViTForImageClassification, ViTFeatureExtractor | |
from transformers import AutoModelForImageClassification, AutoFeatureExtractor | |
from PIL import Image | |
# Load crop disease model (ViT) | |
model = ViTForImageClassification.from_pretrained("iamomtiwari/VITPEST") | |
feature_extractor = ViTFeatureExtractor.from_pretrained("iamomtiwari/VITPEST") | |
# Load fallback model (ResNet50 for general image classification) | |
fallback_model = AutoModelForImageClassification.from_pretrained("microsoft/resnet-50") | |
fallback_feature_extractor = AutoFeatureExtractor.from_pretrained("microsoft/resnet-50") | |
# Load additional ViT model (221k model) for a different classification if the user feedback is "no" | |
vit_221k_model = ViTForImageClassification.from_pretrained("google/vit-base-patch16-224-in21k") | |
vit_221k_feature_extractor = ViTFeatureExtractor.from_pretrained("google/vit-base-patch16-224-in21k") | |
# Define class labels with treatment advice | |
class_labels = { | |
1: {"label": "Stage Corn___Common_Rust", "treatment": "Apply fungicides as soon as symptoms are noticed. Practice crop rotation and remove infected plants."}, | |
2: {"label": "Stage Corn___Gray_Leaf_Spot", "treatment": "Rotate crops to non-host plants, apply resistant varieties, and use fungicides as needed."}, | |
3: {"label": "Stage safe Corn___Healthy", "treatment": "Continue good agricultural practices: ensure proper irrigation, nutrient supply, and monitor for pests."}, | |
4: {"label": "Stage Corn___Northern_Leaf_Blight", "treatment": "Remove and destroy infected plant debris, apply fungicides, and rotate crops."}, | |
5: {"label": "Stage Rice___Brown_Spot", "treatment": "Use resistant varieties, improve field drainage, and apply fungicides if necessary."}, | |
6: {"label": "Stage safe Rice___Healthy", "treatment": "Maintain proper irrigation, fertilization, and pest control measures."}, | |
7: {"label": "Stage Rice___Leaf_Blast", "treatment": "Use resistant varieties, apply fungicides during high-risk periods, and practice good field management."}, | |
8: {"label": "Stage Rice___Neck_Blast", "treatment": "Plant resistant varieties, improve nutrient management, and apply fungicides if symptoms appear."}, | |
9: {"label": "Stage Sugarcane__Bacterial Blight", "treatment": "Use disease-free planting material, practice crop rotation, and destroy infected plants."}, | |
10: {"label": "Stage safe Sugarcane__Healthy", "treatment": "Maintain healthy soil conditions and proper irrigation."}, | |
11: {"label": "Stage Sugarcane__Red_Rot", "treatment": "Plant resistant varieties and ensure good drainage."}, | |
12: {"label": "Stage Wheat___Brown_Rust", "treatment": "Apply fungicides and practice crop rotation with non-host crops."}, | |
13: {"label": "Stage safe Wheat___Healthy", "treatment": "Continue with good management practices, including proper fertilization and weed control."}, | |
14: {"label": "Stage Wheat___Yellow_Rust", "treatment": "Use resistant varieties, apply fungicides, and rotate crops."} | |
} | |
# Mapping label indices to class labels | |
labels_list = [class_labels[i]["label"] for i in range(1, 15)] | |
# Inference function | |
def predict(image, feedback): | |
# First, use the crop disease model (ViT) | |
inputs = feature_extractor(images=image, return_tensors="pt") | |
with torch.no_grad(): | |
outputs = model(**inputs) | |
predicted_class_idx = outputs.logits.argmax(-1).item() | |
# Check if the predicted label corresponds to a crop disease | |
predicted_label = labels_list[predicted_class_idx] | |
# If the feedback is "no", switch to ViT 221k model for a different class prediction | |
if feedback == "no": | |
# Use ViT 221k model | |
inputs_vit_221k = vit_221k_feature_extractor(images=image, return_tensors="pt") | |
with torch.no_grad(): | |
outputs_vit_221k = vit_221k_model(**inputs_vit_221k) | |
predicted_class_idx_vit_221k = outputs_vit_221k.logits.argmax(-1).item() | |
# Get the ViT 221k prediction label | |
vit_221k_label = vit_221k_model.config.id2label[predicted_class_idx_vit_221k] | |
return f"Fallback ViT 221k Prediction: {vit_221k_label}" | |
# If feedback is "yes", return the initial disease prediction and treatment advice | |
if predicted_class_idx < len(class_labels): # It's a crop disease | |
treatment_advice = class_labels[predicted_class_idx + 1]["treatment"] | |
return f"Disease: {predicted_label}\n\nTreatment Advice: {treatment_advice}" | |
else: | |
# If not a crop disease, use the fallback model (ResNet50) for general object detection | |
inputs_fallback = fallback_feature_extractor(images=image, return_tensors="pt") | |
with torch.no_grad(): | |
outputs_fallback = fallback_model(**inputs_fallback) | |
predicted_class_idx_fallback = outputs_fallback.logits.argmax(-1).item() | |
# Get the fallback prediction label | |
fallback_label = fallback_model.config.id2label[predicted_class_idx_fallback] | |
return f"Fallback Prediction (Not a Crop): {fallback_label}" | |
# Create Gradio Interface | |
interface = gr.Interface( | |
fn=predict, | |
inputs=["image", gr.Radio(["yes", "no"], label="Is the prediction correct?")], | |
outputs="text" | |
) | |
interface.launch() | |