File size: 5,065 Bytes
5ad4668
f50f696
 
 
 
 
5ad4668
f50f696
5ad4668
f50f696
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
981d877
 
 
f50f696
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
981d877
f50f696
 
 
 
 
 
981d877
f50f696
 
 
 
 
981d877
 
 
a8d8c56
 
 
981d877
f50f696
 
2e084df
f50f696
0a04eb5
 
 
 
 
fca085d
0a04eb5
902ce66
f50f696
29bdc42
375642d
0a69472
5ad4668
f50f696
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
import gradio as gr
import numpy as np
import matplotlib.pyplot as plt
import gpytorch
import torch
import sys

import gpytorch

# We will use the simplest form of GP model, exact inference
class ExactGPModel(gpytorch.models.ExactGP):
    def __init__(self, train_x, train_y, likelihood):
        super(ExactGPModel, self).__init__(train_x, train_y, likelihood)
        self.mean_module = gpytorch.means.ConstantMean()
        self.covar_module = gpytorch.kernels.ScaleKernel(gpytorch.kernels.RBFKernel())

    def forward(self, x):
        mean_x = self.mean_module(x)
        covar_x = self.covar_module(x)
        return gpytorch.distributions.MultivariateNormal(mean_x, covar_x)

def get_model(x, y, hyperparameters):
    likelihood = gpytorch.likelihoods.GaussianLikelihood(noise_constraint=gpytorch.constraints.GreaterThan(1.e-9))
    model = ExactGPModel(x, y, likelihood)
    model.likelihood.noise = torch.ones_like(model.likelihood.noise) * hyperparameters["noise"]
    model.covar_module.outputscale = torch.ones_like(model.covar_module.outputscale) * hyperparameters["outputscale"]
    model.covar_module.base_kernel.lengthscale = torch.ones_like(model.covar_module.base_kernel.lengthscale) * \
                                                 hyperparameters["lengthscale"]
    return model, likelihood



excuse = "Please only specify numbers, x values should be in [0,1] and y values in [-1,1]."
excuse_max_examples = "This model is trained to work with up to 4 input points."
hyperparameters = {'noise': 1e-4, 'outputscale': 1., 'lengthscale': .1, 'fast_computations': (False,False,False)}


conf = .5

def mean_and_bounds_for_gp(x,y,test_xs):
    gp_model, likelihood = get_model(x,y,hyperparameters)
    gp_model.eval()
    l = likelihood(gp_model(test_xs))
    means = l.mean.squeeze()
    varis = torch.diagonal(l.covariance_matrix.squeeze())
    stds = varis.sqrt()
    return means, means-stds, means+stds


def mean_and_bounds_for_pnf(x,y,test_xs, choice):
    sys.path.append('prior-fitting/')
    model = torch.load(f'onefeature_gp_ls.1_pnf_{choice}.pt')

    logits = model((torch.cat([x,test_xs],0).unsqueeze(1),y.unsqueeze(1)),single_eval_pos=len(x))
    bounds = model.criterion.quantile(logits,center_prob=.682).squeeze(1)
    return model.criterion.mean(logits).squeeze(1), bounds[:,0], bounds[:,1]

def plot_w_conf_interval(ax_or_plt, x, m, lb, ub, color, label_prefix):
    ax_or_plt.plot(x.squeeze(-1),m, color=color, label=label_prefix+' mean')
    ax_or_plt.fill_between(x.squeeze(-1), lb, ub, alpha=.1, color=color, label=label_prefix+' conf. interval')




@torch.no_grad()
def infer(table, choice):
    vfunc = np.vectorize(lambda s: len(s))
    non_empty_row_mask = (vfunc(table).sum(1) != 0)
    table = table[non_empty_row_mask]

    try:
        table = table.astype(np.float32)
    except ValueError:
        return excuse, None
    x = torch.tensor(table[:,0]).unsqueeze(1)
    y = torch.tensor(table[:,1])
    fig = plt.figure(figsize=(8,4),dpi=1000)

    if len(x) > 4:
        return excuse_max_examples, None
    if (x<0.).any() or (x>1.).any() or (y<-1).any() or (y>1).any():
        return excuse, None

    plt.scatter(x,y, color='black', label='Examples in given dataset')


    
    test_xs = torch.linspace(0,1,100).unsqueeze(1)
    
    plot_w_conf_interval(plt, test_xs, *mean_and_bounds_for_gp(x,y,test_xs), 'green', 'GP')
    plot_w_conf_interval(plt, test_xs, *mean_and_bounds_for_pnf(x,y,test_xs, choice), 'blue', 'PFN')
    
    plt.legend(ncol=2,bbox_to_anchor=[0.5,-.14],loc="upper center")
    plt.xlabel('x')
    plt.ylabel('y')
    plt.tight_layout()

    
    return 'There you go, your plot. πŸ“ˆ', plt.gcf()

iface = gr.Interface(fn=infer,
                     title='GP Posterior Approximation with Transformers',
                     description='''This is a demo of PFNs as we describe them in our recent paper (https://openreview.net/forum?id=KSugKcbNf9).
Lines represent means and shaded areas are the confidence interval (68.2% quantile). In green, we have the ground truth GP posterior and in blue we have our approximation.
We provide three models that are architecturally the same, but with different training budgets.
The GP (approximated) uses an RBF Kernel with a little noise (1e-4), 0 mean and a length scale of 0.1.
                     ''',
                     article="<p style='text-align: center'><a href='https://arxiv.org/abs/2112.10510'>Paper: Transformers Can Do Bayesian Inference</a></p>",
                     inputs=[
                         gr.inputs.Dataframe(headers=["x", "y"], datatype=["number", "number"], type='numpy', default=[['.25','.1'],['.75','.4']], col_count=2, label='The data: you can change this and increase the number of data points using the `enter` key.'),
                         gr.inputs.Radio(['160K','800K','4M'], type="value", default='4M', label='Number of Sampled Datasets in Training (Training Costs), higher values yield better results')
                     ], outputs=["text",gr.outputs.Plot(type="matplotlib")])
iface.launch()