File size: 15,021 Bytes
917fe92
 
 
 
 
 
 
 
 
 
 
 
 
fc6f56d
917fe92
 
 
 
 
 
b5dfbe4
917fe92
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0e18ab2
 
917fe92
 
 
 
0e18ab2
917fe92
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0e18ab2
 
 
 
917fe92
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fc6f56d
 
 
917fe92
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c12c627
b5dfbe4
fc6f56d
 
917fe92
 
0e18ab2
917fe92
 
 
 
 
 
 
 
 
0e18ab2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
917fe92
 
 
 
b7ab867
917fe92
b7ab867
917fe92
 
c12c627
b5dfbe4
fc6f56d
 
917fe92
b5dfbe4
 
917fe92
b5dfbe4
917fe92
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b5dfbe4
917fe92
 
b5dfbe4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
917fe92
 
 
 
 
 
 
 
 
0e18ab2
 
917fe92
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b5dfbe4
 
 
917fe92
 
 
 
 
 
3f6d90e
 
917fe92
 
3f6d90e
 
917fe92
 
 
 
 
 
 
c12c627
fc6f56d
917fe92
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0e18ab2
 
917fe92
 
b5dfbe4
 
0e18ab2
b5dfbe4
0e18ab2
917fe92
 
 
 
 
0e18ab2
 
 
 
 
917fe92
 
b5dfbe4
 
0e18ab2
b5dfbe4
0e18ab2
917fe92
 
 
 
 
 
 
0e18ab2
 
 
917fe92
 
b5dfbe4
 
917fe92
b5dfbe4
0e18ab2
917fe92
 
 
 
fc6f56d
917fe92
74bd10c
b5dfbe4
 
 
917fe92
 
 
b5dfbe4
 
 
 
 
 
 
 
 
 
 
 
 
917fe92
 
 
 
 
 
 
146da98
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
import spaces
import os
import numpy as np
from PIL import Image
from omegaconf import OmegaConf
from functools import partial
import gradio as gr
from huggingface_hub import hf_hub_download

import torch
from torchvision import transforms
import rembg
import cv2
from pytorch_lightning import seed_everything

from src.visualizer import CameraVisualizer
from src.pose_estimation import load_model_from_config, estimate_poses, estimate_elevs
from src.pose_funcs import find_optimal_poses
from src.utils import spherical_to_cartesian, elu_to_c2w


if torch.cuda.is_available():
    _device_ = 'cuda:0'
else:
    _device_ = 'cpu'

_config_path_ = 'src/configs/sd-objaverse-finetune-c_concat-256.yaml'

_ckpt_path_ = hf_hub_download(repo_id='tokenid/ID-Pose', filename='ckpts/zero123-xl.ckpt', repo_type='model')
_matcher_ckpt_path_ = hf_hub_download(repo_id='tokenid/ID-Pose', filename='ckpts/indoor_ds_new.ckpt', repo_type='model')

_config_ = OmegaConf.load(_config_path_)
_model_ = load_model_from_config(_config_, _ckpt_path_, device='cpu')
_model_ = _model_.to(_device_)
_model_.eval()


def rgba_to_rgb(img):

    assert img.mode == 'RGBA'

    img = np.asarray(img, dtype=np.float32)
    img[:, :, :3] = img[:, :, :3] * (img[..., 3:]/255.) + (255-img[..., 3:])
    img = img.clip(0, 255).astype(np.uint8)
    return Image.fromarray(img[:, :, :3])


def remove_background(image, rembg_session = None, force = False, **rembg_kwargs):
    do_remove = True
    if image.mode == "RGBA" and image.getextrema()[3][0] < 255:
        do_remove = False
    do_remove = do_remove or force
    if do_remove:
        image = rembg.remove(image, session=rembg_session, **rembg_kwargs)
    return image


def group_recenter(images, ratio=1.5, mask_thres=127, bkg_color=[255, 255, 255, 255]):

    ws = []
    hs = []

    images = [ np.asarray(img) for img in images ]

    for img in images:

        alpha = img[:, :, 3]

        yy, xx = np.where(alpha > mask_thres)
        y0, y1 = yy.min(), yy.max()
        x0, x1 = xx.min(), xx.max()

        ws.append(float(x1 - x0) / img.shape[0])
        hs.append(float(y1 - y0) / img.shape[1]) 

    sz_w = np.max(ws)
    sz_h = np.max(hs)

    sz = max(ratio*sz_w, ratio*sz_h)

    out_rgbs = []

    for rgba in images:

        rgb = rgba[:, :, :3]
        alpha = rgba[:, :, 3]

        yy, xx = np.where(alpha > mask_thres)
        y0, y1 = yy.min(), yy.max()
        x0, x1 = xx.min(), xx.max()

        height, width, chn = rgb.shape

        cy = (y0 + y1) // 2
        cx = (x0 + x1) // 2
  
        y0 = cy - int(np.floor(sz * rgba.shape[0] / 2))
        y1 = cy + int(np.ceil(sz * rgba.shape[0] / 2))
        x0 = cx - int(np.floor(sz * rgba.shape[1] / 2))
        x1 = cx + int(np.ceil(sz * rgba.shape[1] / 2))
        out = rgba[ max(y0, 0) : min(y1, height) , max(x0, 0) : min(x1, width), : ].copy()
        pads = [(max(0-y0, 0), max(y1-height, 0)), (max(0-x0, 0), max(x1-width, 0)), (0, 0)]
        out = np.pad(out, pads, mode='constant', constant_values=0)

        out[:, :, :3] = out[:, :, :3] * (out[..., 3:]/255.) + np.array(bkg_color)[None, None, :3] * (1-out[..., 3:]/255.)
        out[:, :, -1] = bkg_color[-1]

        out = cv2.resize(out.astype(np.uint8), (256, 256))
        out = out[:, :, :3]

        out_rgbs.append(out)

    return out_rgbs


def run_preprocess(image1, image2, preprocess_chk, seed_value):

    seed_everything(seed_value)

    if preprocess_chk:
        rembg_session = rembg.new_session()
        image1 = remove_background(image1, force=True, rembg_session = rembg_session)
        image2 = remove_background(image2, force=True, rembg_session = rembg_session)

        rgbs = group_recenter([image1, image2])

        image1 = Image.fromarray(rgbs[0])
        image2 = Image.fromarray(rgbs[1])

    return image1, image2


def image_to_tensor(img, width=256, height=256):

    img = transforms.ToTensor()(img).unsqueeze(0)
    img = img * 2 - 1
    img = transforms.functional.resize(img, [height, width])

    return img


@spaces.GPU(duration=110)
def run_pose_exploration(image1, image2, probe_bsz, adj_bsz, adj_iters, seed_value):

    seed_everything(seed_value)

    image1 = image_to_tensor(image1).to(_device_)
    image2 = image_to_tensor(image2).to(_device_) 

    images = [image1, image2]

    elevs, elev_ranges = estimate_elevs(
        _model_, images, 
        est_type='all',
        matcher_ckpt_path=_matcher_ckpt_path_
    )

    anchor_polar = elevs[0]

    if torch.mean(torch.abs(image1 - image2)) < 0.005:
        theta = azimuth = radius = 0
        print('Identical images found!')
    else:
        noise = np.random.randn(probe_bsz, 4, 32, 32)
        result_poses, aux_data = estimate_poses(
            _model_, images,
            seed_cand_num=8,
            explore_type='triangular',
            refine_type='triangular',
            probe_ts_range=[0.2, 0.21],
            ts_range=[0.2, 0.21],
            probe_bsz=probe_bsz,
            adjust_factor=10.0,
            adjust_iters=adj_iters,
            adjust_bsz=adj_bsz,
            refine_factor=1.0,
            refine_iters=0,
            refine_bsz=4,
            noise=noise,
            elevs=elevs,
            elev_ranges=elev_ranges
        )
        theta, azimuth, radius = result_poses[0]

    if anchor_polar is None:
        anchor_polar = np.pi/2

    explored_sph = (float(theta), float(azimuth), float(radius))

    return float(anchor_polar), explored_sph


@spaces.GPU(duration=110)
def run_pose_refinement(image1, image2, est_result, refine_iters, seed_value):

    seed_everything(seed_value)

    anchor_polar = est_result[0]
    explored_sph = est_result[1]

    images = [image_to_tensor(image1).to(_device_), image_to_tensor(image2).to(_device_)]
    images = [ img.permute(0, 2, 3, 1) for img in images ]

    out_poses, _, loss = find_optimal_poses(
        _model_, images, 
        1.0, 
        bsz=1,
        n_iter=refine_iters, 
        init_poses={1: explored_sph}, 
        ts_range=[0.2, 0.21],
        combinations=[(0, 1), (1, 0)],
        avg_last_n=20,
        print_n=100
    )

    final_sph = out_poses[0]
    theta, azimuth, radius = final_sph

    xyz0 = spherical_to_cartesian((anchor_polar, 0., 4.))
    c2w0 = elu_to_c2w(xyz0, np.zeros(3), np.array([0., 0., 1.]))

    xyz1 = spherical_to_cartesian((theta + anchor_polar, 0. + azimuth, 4. + radius))
    c2w1 = elu_to_c2w(xyz1, np.zeros(3), np.array([0., 0., 1.]))

    cam_vis = CameraVisualizer([c2w0, c2w1], ['Image 1', 'Image 2'], ['red', 'blue'], images=[np.asarray(image1, dtype=np.uint8), np.asarray(image2, dtype=np.uint8)])
    fig = cam_vis.update_figure(5, base_radius=-1.2, font_size=16, show_background=True, show_grid=True, show_ticklabels=True)

    return (anchor_polar, final_sph), fig


def run_example(image1, image2):

    image1, image2 = run_preprocess(image1, image2, True, 0)
    anchor_polar, explored_sph = run_pose_exploration(image1, image2, 16, 4, 10, 0)

    return (anchor_polar, explored_sph), image1, image2


def run_or_visualize(image1, image2, probe_bsz, adj_bsz, adj_iters, seed_value, est_result):

    if est_result is None:
        anchor_polar, explored_sph = run_pose_exploration(image1, image2, probe_bsz, adj_bsz, adj_iters, seed_value)
    else:
        anchor_polar = est_result[0]
        explored_sph = est_result[1]
        print('Using cache result.')

    xyz0 = spherical_to_cartesian((anchor_polar, 0., 4.))
    c2w0 = elu_to_c2w(xyz0, np.zeros(3), np.array([0., 0., 1.]))

    xyz1 = spherical_to_cartesian((explored_sph[0] + anchor_polar, 0. + explored_sph[1], 4. + explored_sph[2]))
    c2w1 = elu_to_c2w(xyz1, np.zeros(3), np.array([0., 0., 1.]))

    cam_vis = CameraVisualizer([c2w0, c2w1], ['Image 1', 'Image 2'], ['red', 'blue'], images=[np.asarray(image1, dtype=np.uint8), np.asarray(image2, dtype=np.uint8)])
    fig = cam_vis.update_figure(5, base_radius=-1.2, font_size=16, show_background=True, show_grid=True, show_ticklabels=True)

    return (anchor_polar, explored_sph), fig, gr.update(interactive=True)


_HEADER_ = '''
# Official 🤗 Gradio Demo for [ID-Pose: Sparse-view Camera Pose Estimation By Inverting Diffusion Models](https://github.com/xt4d/id-pose)
- ID-Pose accepts input images with NO overlapping appearance. 
- The estimation takes about 1 minute. ZeroGPU may be halted during processing due to quota restrictions.
'''

_FOOTER_ = '''
[Project Page](https://xt4d.github.io/id-pose-web/) | ⭐ [Github](https://github.com/xt4d/id-pose) ⭐ [![GitHub Stars](https://img.shields.io/github/stars/xt4d/id-pose?style=social)](https://github.com/xt4d/id-pose)
---
'''

_CITE_ = r"""
```bibtex
@article{cheng2023id,
  title={ID-Pose: Sparse-view Camera Pose Estimation by Inverting Diffusion Models},
  author={Cheng, Weihao and Cao, Yan-Pei and Shan, Ying},
  journal={arXiv preprint arXiv:2306.17140},
  year={2023}
}
```
"""

def run_demo():

    demo = gr.Blocks(title='ID-Pose: Sparse-view Camera Pose Estimation By Inverting Diffusion Models')

    with demo:

        est_result = gr.JSON(visible=False)

        gr.Markdown(_HEADER_)

        with gr.Row(variant='panel'):
            with gr.Column(scale=1):

                with gr.Row():
                    input_image1 = gr.Image(type='pil', image_mode='RGBA', label='Input Image 1')
                    input_image2 = gr.Image(type='pil', image_mode='RGBA', label='Input Image 2')

                with gr.Row():
                    processed_image1 = gr.Image(type='numpy', image_mode='RGB', label='Processed Image 1', interactive=False)
                    processed_image2 = gr.Image(type='numpy', image_mode='RGB', label='Processed Image 2', interactive=False)

                with gr.Row():
                    preprocess_chk = gr.Checkbox(True, label='Remove background and recenter object')

                with gr.Accordion('Advanced options', open=False):
                    probe_bsz = gr.Slider(4, 32, value=16, step=4, label='Probe Batch Size')
                    adj_bsz = gr.Slider(1, 8, value=4, step=1, label='Adjust Batch Size')
                    adj_iters = gr.Slider(1, 20, value=10, step=1, label='Adjust Iterations')
                    seed_value = gr.Number(value=0, label="Seed Value", precision=0)

                with gr.Row():
                    run_btn = gr.Button('Estimate', variant='primary', interactive=True)

                with gr.Row():
                    refine_iters = gr.Slider(0, 1000, value=0, step=50, label='Refinement Iterations')

                with gr.Row():
                    refine_btn = gr.Button('Refine', variant='primary', interactive=False)

                with gr.Row():
                    gr.Markdown(_FOOTER_)

                with gr.Row():
                    gr.Markdown(_CITE_)


            with gr.Column(scale=1.4):

                with gr.Row():
                    vis_output = gr.Plot(label='Camera Pose Results: anchor (red) and target (blue)')

                with gr.Row():

                    with gr.Column(min_width=200):
                        gr.Examples(
                            examples = [
                                ['data/gradio_demo/duck_0.png', 'data/gradio_demo/duck_1.png'],
                                ['data/gradio_demo/chair_0.png', 'data/gradio_demo/chair_1.png'],
                                ['data/gradio_demo/foosball_0.png', 'data/gradio_demo/foosball_1.png'],
                                ['data/gradio_demo/bunny_0.png', 'data/gradio_demo/bunny_1.png'],
                                ['data/gradio_demo/circo_0.png', 'data/gradio_demo/circo_1.png'],
                            ],
                            inputs=[input_image1, input_image2],
                            fn=run_example,
                            outputs=[est_result, processed_image1, processed_image2],
                            label='Examples (Captured)',
                            cache_examples='lazy',
                            examples_per_page=5
                        )

                    with gr.Column(min_width=200):
                        gr.Examples(
                            examples = [
                                ['data/gradio_demo/arc_0.png', 'data/gradio_demo/arc_1.png'],
                                ['data/gradio_demo/husky_0.png', 'data/gradio_demo/husky_1.png'],
                                ['data/gradio_demo/cybertruck_0.png', 'data/gradio_demo/cybertruck_1.png'],
                                ['data/gradio_demo/plane_0.png', 'data/gradio_demo/plane_1.png'],
                                ['data/gradio_demo/christ_0.png', 'data/gradio_demo/christ_1.png'],
                            ],
                            inputs=[input_image1, input_image2],
                            fn=run_example,
                            outputs=[est_result, processed_image1, processed_image2],
                            label='Examples (Internet)',
                            cache_examples='lazy',
                            examples_per_page=5
                        )
                    
                    with gr.Column(min_width=200):
                        gr.Examples(
                            examples = [
                                ['data/gradio_demo/status_0.png', 'data/gradio_demo/status_1.png'],
                                ['data/gradio_demo/cat_0.png', 'data/gradio_demo/cat_1.png'],
                                ['data/gradio_demo/ferrari_0.png', 'data/gradio_demo/ferrari_1.png'],
                                ['data/gradio_demo/elon_0.png', 'data/gradio_demo/elon_1.png'],
                                ['data/gradio_demo/ride_horse_0.png', 'data/gradio_demo/ride_horse_1.png'],
                            ],
                            inputs=[input_image1, input_image2],
                            fn=run_example,
                            outputs=[est_result, processed_image1, processed_image2],
                            label='Examples (Generated)',
                            cache_examples='lazy',
                            examples_per_page=5
                        )

        run_btn.click(
            fn=run_preprocess,
            inputs=[input_image1, input_image2, preprocess_chk, seed_value],
            outputs=[processed_image1, processed_image2],
        ).success(
            fn=run_or_visualize,
            inputs=[processed_image1, processed_image2, probe_bsz, adj_bsz, adj_iters, seed_value, est_result],
            outputs=[est_result, vis_output, refine_btn]
        )
        
        refine_btn.click(
            fn=run_pose_refinement,
            inputs=[processed_image1, processed_image2, est_result, refine_iters, seed_value],
            outputs=[est_result, vis_output]
        )

        input_image1.clear(
            fn=lambda: None,
            outputs=[est_result]
        )

        input_image2.clear(
            fn=lambda: None,
            outputs=[est_result]
        )

    demo.launch()


if __name__ == '__main__':

    run_demo()