Spaces:
Runtime error
Runtime error
File size: 4,926 Bytes
6b0d541 11ae595 7f962d6 6b0d541 a0b5dc7 6b0d541 a0b5dc7 6b0d541 7f962d6 6b0d541 7f962d6 6b0d541 7f962d6 6b0d541 85eab14 6b0d541 85eab14 a0b5dc7 85eab14 139d801 85eab14 139d801 85eab14 6b0d541 a0b5dc7 85eab14 139d801 6b0d541 85eab14 adcb063 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 |
#!/usr/bin/env python
# coding: utf-8
# Uncomment to run on cpu
#import os
#os.environ["JAX_PLATFORM_NAME"] = "cpu"
import random
import jax
import flax.linen as nn
from flax.training.common_utils import shard
from flax.jax_utils import replicate, unreplicate
from transformers import BartTokenizer, FlaxBartForConditionalGeneration
from PIL import Image
import numpy as np
import matplotlib.pyplot as plt
from vqgan_jax.modeling_flax_vqgan import VQModel
from dalle_mini.model import CustomFlaxBartForConditionalGeneration
# ## CLIP Scoring
from transformers import CLIPProcessor, FlaxCLIPModel
import gradio as gr
from dalle_mini.helpers import captioned_strip
DALLE_REPO = 'flax-community/dalle-mini'
DALLE_COMMIT_ID = '4d34126d0df8bc4a692ae933e3b902a1fa8b6114'
VQGAN_REPO = 'flax-community/vqgan_f16_16384'
VQGAN_COMMIT_ID = '90cc46addd2dd8f5be21586a9a23e1b95aa506a9'
tokenizer = BartTokenizer.from_pretrained(DALLE_REPO, revision=DALLE_COMMIT_ID)
model = CustomFlaxBartForConditionalGeneration.from_pretrained(DALLE_REPO, revision=DALLE_COMMIT_ID)
vqgan = VQModel.from_pretrained(VQGAN_REPO, revision=VQGAN_COMMIT_ID)
def custom_to_pil(x):
x = np.clip(x, 0., 1.)
x = (255*x).astype(np.uint8)
x = Image.fromarray(x)
if not x.mode == "RGB":
x = x.convert("RGB")
return x
def generate(input, rng, params):
return model.generate(
**input,
max_length=257,
num_beams=1,
do_sample=True,
prng_key=rng,
eos_token_id=50000,
pad_token_id=50000,
params=params,
)
def get_images(indices, params):
return vqgan.decode_code(indices, params=params)
p_generate = jax.pmap(generate, "batch")
p_get_images = jax.pmap(get_images, "batch")
bart_params = replicate(model.params)
vqgan_params = replicate(vqgan.params)
clip = FlaxCLIPModel.from_pretrained("openai/clip-vit-base-patch32")
print("Initialize FlaxCLIPModel")
processor = CLIPProcessor.from_pretrained("openai/clip-vit-base-patch32")
print("Initialize CLIPProcessor")
def hallucinate(prompt, num_images=64):
prompt = [prompt] * jax.device_count()
inputs = tokenizer(prompt, return_tensors='jax', padding="max_length", truncation=True, max_length=128).data
inputs = shard(inputs)
all_images = []
for i in range(num_images // jax.device_count()):
key = random.randint(0, 1e7)
rng = jax.random.PRNGKey(key)
rngs = jax.random.split(rng, jax.local_device_count())
indices = p_generate(inputs, rngs, bart_params).sequences
indices = indices[:, :, 1:]
images = p_get_images(indices, vqgan_params)
images = np.squeeze(np.asarray(images), 1)
for image in images:
all_images.append(custom_to_pil(image))
return all_images
def clip_top_k(prompt, images, k=8):
inputs = processor(text=prompt, images=images, return_tensors="np", padding=True)
outputs = clip(**inputs)
logits = outputs.logits_per_text
scores = np.array(logits[0]).argsort()[-k:][::-1]
return [images[score] for score in scores]
def compose_predictions(images, caption=None):
increased_h = 0 if caption is None else 48
w, h = images[0].size[0], images[0].size[1]
img = Image.new("RGB", (len(images)*w, h + increased_h))
for i, img_ in enumerate(images):
img.paste(img_, (i*w, increased_h))
if caption is not None:
draw = ImageDraw.Draw(img)
font = ImageFont.truetype("/usr/share/fonts/truetype/liberation2/LiberationMono-Bold.ttf", 40)
draw.text((20, 3), caption, (255,255,255), font=font)
return img
def top_k_predictions(prompt, num_candidates=32, k=8):
images = hallucinate(prompt, num_images=num_candidates)
images = clip_top_k(prompt, images, k=k)
return images
def run_inference(prompt, num_images=32, num_preds=8):
images = top_k_predictions(prompt, num_candidates=num_images, k=num_preds)
predictions = captioned_strip(images)
output_title = f"""
<b>{prompt}</b>
"""
return (output_title, predictions)
outputs = [
gr.outputs.HTML(label=""), # To be used as title
gr.outputs.Image(label=''),
]
description = """
DALL·E-mini is an AI model that generates images from any prompt you give! Generate images from text:
"""
gr.Interface(run_inference,
inputs=[gr.inputs.Textbox(label='What do you want to see?')],
outputs=outputs,
title='DALL·E mini',
description=description,
article="<p style='text-align: center'> Created by Boris Dayma et al. 2021 | <a href='https://github.com/borisdayma/dalle-mini'>GitHub</a> | <a href='https://wandb.ai/dalle-mini/dalle-mini/reports/DALL-E-mini--Vmlldzo4NjIxODA'>Report</a></p>",
layout='vertical',
theme='huggingface',
examples=[['an armchair in the shape of an avocado'], ['snowy mountains by the sea']],
allow_flagging=False,
live=False,
# server_port=8999
).launch(share=True)
|