File size: 12,186 Bytes
04a2c17
 
1f8286c
d58fc7b
e51ae04
da55889
04a2c17
5216b90
22e9be8
e01feae
04a2c17
 
 
e01feae
681e0a4
e01feae
 
 
16d3c27
e01feae
 
 
 
285f2a6
 
 
e01feae
 
04a2c17
 
 
 
53ce693
e01feae
 
 
 
 
 
 
53ce693
e01feae
16d3c27
 
 
e01feae
04a2c17
e01feae
04a2c17
 
e01feae
04a2c17
 
e01feae
 
 
 
 
 
 
 
 
 
 
 
 
 
 
16d3c27
 
 
 
e01feae
 
 
 
e51ae04
04a2c17
 
16d3c27
04a2c17
 
e01feae
e51ae04
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
04a2c17
26538e1
04a2c17
 
 
 
 
 
 
 
 
e01feae
 
 
 
5216b90
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
43fad47
 
5216b90
43fad47
5216b90
 
 
 
 
 
 
 
 
 
d58fc7b
 
 
 
 
 
 
 
 
 
 
 
ac8ae1f
d58fc7b
 
 
 
 
 
 
 
 
 
da55889
 
 
6992ec1
da55889
 
 
 
6992ec1
d58fc7b
 
e51ae04
81b4043
 
 
 
 
 
ac8ae1f
d58fc7b
 
f7c2ff7
 
 
 
 
 
 
ac8ae1f
 
 
 
 
 
d58fc7b
81b4043
d58fc7b
 
 
ac8ae1f
 
 
 
 
 
e51ae04
81b4043
f7c2ff7
d58fc7b
 
81b4043
ac8ae1f
d58fc7b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
da55889
 
d58fc7b
 
 
 
5216b90
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
43fad47
 
5216b90
 
 
 
 
 
 
 
 
 
 
 
 
e51ae04
da55889
e51ae04
 
 
 
 
 
 
 
 
 
 
 
ac8ae1f
e51ae04
da55889
e51ae04
 
 
 
da55889
 
 
6992ec1
da55889
 
 
 
6992ec1
e51ae04
ac8ae1f
 
 
 
e51ae04
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ac8ae1f
e51ae04
da55889
 
e51ae04
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
import gradio as gr
import pandas as pd
import plotly.express as px
import plotly.graph_objects as go
from plotly.subplots import make_subplots
from datetime import datetime

HEIGHT = 400
WIDTH = 1100


def prepare_trades(trades_df: pd.DataFrame) -> pd.DataFrame:
    """Prepares the trades data for analysis."""
    trades_df["creation_timestamp"] = pd.to_datetime(trades_df["creation_timestamp"])
    trades_df["creation_date"] = trades_df["creation_timestamp"].dt.date
    trades_df["creation_timestamp"] = trades_df["creation_timestamp"].dt.tz_convert(
        "UTC"
    )
    trades_df = trades_df.sort_values(by="creation_timestamp", ascending=True)
    trades_df["month_year"] = (
        trades_df["creation_timestamp"].dt.to_period("M").astype(str)
    )
    trades_df["month_year_week"] = (
        trades_df["creation_timestamp"]
        .dt.to_period("W")
        .dt.start_time.dt.strftime("%b-%d-%Y")
    )
    trades_df["winning_trade"] = trades_df["winning_trade"].astype(int)
    return trades_df


def get_overall_trades(trades_df: pd.DataFrame) -> pd.DataFrame:
    """Gets the overall trades data"""
    trades_count = trades_df.groupby("month_year_week").size().reset_index()
    trades_count.columns = trades_count.columns.astype(str)
    trades_count.rename(columns={"0": "trades"}, inplace=True)
    return trades_count


def get_overall_by_market_trades(trades_df: pd.DataFrame) -> pd.DataFrame:
    """Gets the overall trades data"""
    trades_count = (
        trades_df.groupby(["month_year_week", "market_creator"], sort=False)
        .size()
        .reset_index()
    )
    trades_count.columns = trades_count.columns.astype(str)
    trades_count.rename(columns={"0": "trades"}, inplace=True)
    return trades_count


def get_overall_winning_trades(trades_df: pd.DataFrame) -> pd.DataFrame:
    """Gets the overall winning trades data for the given tools and calculates the winning percentage."""
    winning_trades = (
        trades_df.groupby(["month_year_week"])["winning_trade"].sum()
        / trades_df.groupby(["month_year_week"])["winning_trade"].count()
        * 100
    )
    # winning_trades is a series, give it a dataframe
    winning_trades = winning_trades.reset_index()
    winning_trades.columns = winning_trades.columns.astype(str)
    winning_trades.columns = ["month_year_week", "winning_trade"]
    return winning_trades


def get_overall_winning_by_market_trades(trades_df: pd.DataFrame) -> pd.DataFrame:
    """Gets the overall winning trades data for the given tools and calculates the winning percentage."""
    winning_trades = (
        trades_df.groupby(["month_year_week", "market_creator"], sort=False)[
            "winning_trade"
        ].sum()
        / trades_df.groupby(["month_year_week", "market_creator"], sort=False)[
            "winning_trade"
        ].count()
        * 100
    )

    winning_trades = winning_trades.reset_index()
    winning_trades.columns = winning_trades.columns.astype(str)
    winning_trades.columns = ["month_year_week", "market_creator", "winning_trade"]
    return winning_trades


def get_overall_winning_by_market_and_trader_type(
    trades_df: pd.DataFrame,
) -> pd.DataFrame:
    """Gets the overall winning trades data for the given tools and calculates the winning percentage."""
    # Group by week, market_creator and staking_type
    winning_trades = (
        trades_df.groupby(
            ["month_year_week", "market_creator", "staking_type"], sort=False
        )["winning_trade"].sum()
        / trades_df.groupby(
            ["month_year_week", "market_creator", "staking_type"], sort=False
        )["winning_trade"].count()
        * 100
    )

    winning_trades = winning_trades.reset_index()
    winning_trades.columns = winning_trades.columns.astype(str)
    winning_trades.columns = [
        "month_year_week",
        "market_creator",
        "staking_type",
        "winning_trade",
    ]
    return winning_trades


def plot_trades_by_week(trades_df: pd.DataFrame) -> gr.BarPlot:
    """Plots the weekly trades data ."""
    return gr.BarPlot(
        value=trades_df,
        x="month_year_week",
        y="trades",
        show_label=True,
        interactive=True,
        show_actions_button=True,
        tooltip=["month_year_week", "trades"],
        height=HEIGHT,
        width=WIDTH,
    )


def integrated_plot_trades_per_market_by_week(trades_df: pd.DataFrame) -> gr.Plot:

    # adding the total
    trades_all = trades_df.copy(deep=True)
    trades_all["market_creator"] = "all"

    # merging both dataframes
    all_filtered_trades = pd.concat([trades_df, trades_all], ignore_index=True)
    all_filtered_trades = all_filtered_trades.sort_values(
        by="creation_timestamp", ascending=True
    )

    trades = get_overall_by_market_trades(all_filtered_trades)
    fig = px.bar(
        trades,
        x="month_year_week",
        y="trades",
        color="market_creator",
        barmode="group",
        color_discrete_sequence=["purple", "goldenrod", "darkgreen"],
        category_orders={"market_creator": ["pearl", "quickstart", "all"]},
    )

    fig.update_layout(
        xaxis_title="Week",
        yaxis_title="Weekly nr of trades",
        legend=dict(yanchor="top", y=0.5),
    )
    fig.update_layout(width=WIDTH, height=HEIGHT)
    fig.update_xaxes(tickformat="%b %d\n%Y")
    return gr.Plot(value=fig)


def integrated_plot_trades_per_market_by_week_v2(trades_df: pd.DataFrame) -> gr.Plot:
    # adding the total
    trades_all = trades_df.copy(deep=True)
    trades_all["market_creator"] = "all"

    # merging both dataframes
    all_filtered_trades = pd.concat([trades_df, trades_all], ignore_index=True)
    all_filtered_trades = all_filtered_trades.sort_values(
        by="creation_timestamp", ascending=True
    )
    # Create binary staking category
    all_filtered_trades["staking_type"] = all_filtered_trades["staking"].apply(
        lambda x: "non_Olas" if x == "non_Olas" else "Olas"
    )

    # Group by week, market_creator and staking_type
    trades = (
        all_filtered_trades.groupby(
            ["month_year_week", "market_creator", "staking_type"], sort=False
        )
        .size()
        .reset_index(name="trades")
    )
    # Convert string dates to datetime and sort them
    all_dates_dt = sorted(
        [
            datetime.strptime(date, "%b-%d-%Y")
            for date in trades["month_year_week"].unique()
        ]
    )
    # Convert back to string format
    all_dates = [date.strftime("%b-%d-%Y") for date in all_dates_dt]
    # Combine the traces
    final_traces = []
    market_colors = {"pearl": "darkviolet", "quickstart": "goldenrod", "all": "green"}
    market_darker_colors = {
        "pearl": "purple",
        "quickstart": "darkgoldenrod",
        "all": "darkgreen",
    }

    # Process both Olas and non-Olas traces for each market together
    for market in ["pearl", "quickstart", "all"]:
        market_data = trades[trades["market_creator"] == market]
        # Create a dictionary to store the Olas values for each week
        olas_values = dict(
            zip(
                market_data[market_data["staking_type"] == "Olas"]["month_year_week"],
                market_data[market_data["staking_type"] == "Olas"]["trades"],
            )
        )
        # First add 'Olas' trace
        olas_data = market_data[market_data["staking_type"] == "Olas"]
        olas_trace = go.Bar(
            x=olas_data["month_year_week"],
            y=olas_data["trades"],
            name=f"{market}-Olas",
            marker_color=market_colors[market],
            offsetgroup=market,  # Keep the market grouping
            showlegend=True,
        )

        # Then add 'non_Olas' trace with base set to olas values
        non_Olas_data = market_data[market_data["staking_type"] == "non_Olas"]
        non_Olas_trace = go.Bar(
            x=non_Olas_data["month_year_week"],
            y=non_Olas_data["trades"],
            name=f"{market}-non_Olas",
            marker_color=market_darker_colors[market],
            offsetgroup=market,  # Keep the market grouping
            base=[olas_values.get(x, 0) for x in non_Olas_data["month_year_week"]],
            showlegend=True,
        )

        final_traces.extend([olas_trace, non_Olas_trace])

    # Create new figure with the combined traces
    fig = go.Figure(data=final_traces)

    # Update layout
    fig.update_layout(
        xaxis_title="Week",
        yaxis_title="Weekly nr of trades",
        legend=dict(yanchor="top", y=0.5),
        width=WIDTH,
        height=HEIGHT,
        barmode="group",
    )

    # Update x-axis format
    fig.update_xaxes(tickformat="%b %d\n%Y")
    # Update layout to force x-axis category order (hotfix for a sorting issue)
    fig.update_layout(xaxis={"categoryorder": "array", "categoryarray": all_dates})

    return gr.Plot(value=fig)


def integrated_plot_winning_trades_per_market_by_week(
    trades_df: pd.DataFrame,
) -> gr.Plot:
    # adding the total
    trades_all = trades_df.copy(deep=True)
    trades_all["market_creator"] = "all"

    # merging both dataframes
    all_filtered_trades = pd.concat([trades_df, trades_all], ignore_index=True)
    all_filtered_trades = all_filtered_trades.sort_values(
        by="creation_timestamp", ascending=True
    )
    final_df = get_overall_winning_by_market_trades(all_filtered_trades)
    fig = px.bar(
        final_df,
        x="month_year_week",
        y="winning_trade",
        color="market_creator",
        barmode="group",
        color_discrete_sequence=["purple", "goldenrod", "darkgreen"],
        category_orders={"market_creator": ["pearl", "quickstart", "all"]},
    )
    fig.update_layout(
        xaxis_title="Week",
        yaxis_title="Weekly % of winning trades",
        legend=dict(yanchor="top", y=0.5),
    )
    fig.update_layout(width=WIDTH, height=HEIGHT)
    fig.update_xaxes(tickformat="%b %d\n%Y")
    return gr.Plot(
        value=fig,
    )


def integrated_plot_winning_trades_per_market_by_week_v2(
    trades_df: pd.DataFrame, trader_filter: str = "all"
) -> gr.Plot:
    # adding the total
    trades_all = trades_df.copy(deep=True)
    trades_all["market_creator"] = "all"

    # merging both dataframes
    all_filtered_trades = pd.concat([trades_df, trades_all], ignore_index=True)
    all_filtered_trades = all_filtered_trades.sort_values(
        by="creation_timestamp", ascending=True
    )
    # Create binary staking category
    all_filtered_trades["staking_type"] = all_filtered_trades["staking"].apply(
        lambda x: "non_Olas" if x == "non_Olas" else "Olas"
    )
    if trader_filter == "all":
        final_df = get_overall_winning_by_market_trades(all_filtered_trades)
    else:
        final_df = get_overall_winning_by_market_and_trader_type(all_filtered_trades)

    # Convert string dates to datetime and sort them
    all_dates_dt = sorted(
        [
            datetime.strptime(date, "%b-%d-%Y")
            for date in final_df["month_year_week"].unique()
        ]
    )
    # Convert back to string format
    all_dates = [date.strftime("%b-%d-%Y") for date in all_dates_dt]
    color_discrete_sequence = ["darkviolet", "goldenrod", "green"]
    if trader_filter == "Olas":
        final_df = final_df[final_df["staking_type"] == "Olas"]
    elif trader_filter == "non_Olas":
        final_df = final_df[final_df["staking_type"] == "non_Olas"]
        color_discrete_sequence = ["purple", "darkgoldenrod", "darkgreen"]

    fig = px.bar(
        final_df,
        x="month_year_week",
        y="winning_trade",
        color="market_creator",
        barmode="group",
        color_discrete_sequence=color_discrete_sequence,
        category_orders={"market_creator": ["pearl", "quickstart", "all"]},
    )
    fig.update_layout(
        xaxis_title="Week",
        yaxis_title="Weekly % of winning trades",
        legend=dict(yanchor="top", y=0.5),
    )

    fig.update_xaxes(tickformat="%b %d\n%Y")
    # Update layout to force x-axis category order (hotfix for a sorting issue)
    fig.update_layout(xaxis={"categoryorder": "array", "categoryarray": all_dates})
    return gr.Plot(
        value=fig,
    )