File size: 2,659 Bytes
bb86f84
3b3cd95
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bb86f84
 
3b3cd95
 
bb86f84
3b3cd95
bb86f84
3b3cd95
 
 
 
 
 
bb86f84
3b3cd95
bb86f84
3b3cd95
bb86f84
3b3cd95
bb86f84
3b3cd95
bb86f84
3b3cd95
bb86f84
3b3cd95
bb86f84
3b3cd95
bb86f84
3b3cd95
bb86f84
3b3cd95
 
 
 
 
 
 
 
 
 
 
 
bb86f84
3b3cd95
bb86f84
3b3cd95
 
 
 
 
 
 
 
 
 
 
 
bb86f84
 
3b3cd95
bb86f84
3b3cd95
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
---
license: mit
base_model: facebook/w2v-bert-2.0
tags:
- generated_from_trainer
datasets:
- common_voice_16_1
metrics:
- wer
model-index:
- name: w2v-bert-2.0-pt_pt_v2
  results:
  - task:
      name: Automatic Speech Recognition
      type: automatic-speech-recognition
    dataset:
      name: common_voice_16_1
      type: common_voice_16_1
      config: pt
      split: validation
      args: pt
    metrics:
    - name: Wer
      type: wer
      value: 0.08315087821729188
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# w2v-bert-2.0-pt_pt_v2

This model is a fine-tuned version of [facebook/w2v-bert-2.0](https://huggingface.co/facebook/w2v-bert-2.0) on the common_voice_16_1 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1282
- Wer: 0.0832
- Cer: 0.0224
- Bert Score: 0.9739

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 10
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step | Validation Loss | Wer    | Cer    | Bert Score |
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:----------:|
| 1.2735        | 1.0   | 678  | 0.2292          | 0.1589 | 0.0415 | 0.9498     |
| 0.1715        | 2.0   | 1356 | 0.1762          | 0.1283 | 0.0344 | 0.9599     |
| 0.1158        | 3.0   | 2034 | 0.1539          | 0.1100 | 0.0298 | 0.9646     |
| 0.0821        | 4.0   | 2712 | 0.1362          | 0.0949 | 0.0258 | 0.9703     |
| 0.0605        | 5.0   | 3390 | 0.1349          | 0.0860 | 0.0236 | 0.9728     |
| 0.0475        | 6.0   | 4068 | 0.1395          | 0.0871 | 0.0239 | 0.9728     |
| 0.0355        | 7.0   | 4746 | 0.1487          | 0.0837 | 0.0230 | 0.9739     |
| 0.0309        | 8.0   | 5424 | 0.1452          | 0.0873 | 0.0240 | 0.9728     |
| 0.0308        | 9.0   | 6102 | 0.1390          | 0.0843 | 0.0228 | 0.9735     |
| 0.0239        | 10.0  | 6780 | 0.1282          | 0.0832 | 0.0224 | 0.9739     |


### Framework versions

- Transformers 4.38.2
- Pytorch 2.2.0
- Datasets 2.18.0
- Tokenizers 0.15.2