File size: 2,659 Bytes
bb86f84 3b3cd95 bb86f84 3b3cd95 bb86f84 3b3cd95 bb86f84 3b3cd95 bb86f84 3b3cd95 bb86f84 3b3cd95 bb86f84 3b3cd95 bb86f84 3b3cd95 bb86f84 3b3cd95 bb86f84 3b3cd95 bb86f84 3b3cd95 bb86f84 3b3cd95 bb86f84 3b3cd95 bb86f84 3b3cd95 bb86f84 3b3cd95 bb86f84 3b3cd95 bb86f84 3b3cd95 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 |
---
license: mit
base_model: facebook/w2v-bert-2.0
tags:
- generated_from_trainer
datasets:
- common_voice_16_1
metrics:
- wer
model-index:
- name: w2v-bert-2.0-pt_pt_v2
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: common_voice_16_1
type: common_voice_16_1
config: pt
split: validation
args: pt
metrics:
- name: Wer
type: wer
value: 0.08315087821729188
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# w2v-bert-2.0-pt_pt_v2
This model is a fine-tuned version of [facebook/w2v-bert-2.0](https://huggingface.co/facebook/w2v-bert-2.0) on the common_voice_16_1 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1282
- Wer: 0.0832
- Cer: 0.0224
- Bert Score: 0.9739
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 10
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer | Cer | Bert Score |
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:----------:|
| 1.2735 | 1.0 | 678 | 0.2292 | 0.1589 | 0.0415 | 0.9498 |
| 0.1715 | 2.0 | 1356 | 0.1762 | 0.1283 | 0.0344 | 0.9599 |
| 0.1158 | 3.0 | 2034 | 0.1539 | 0.1100 | 0.0298 | 0.9646 |
| 0.0821 | 4.0 | 2712 | 0.1362 | 0.0949 | 0.0258 | 0.9703 |
| 0.0605 | 5.0 | 3390 | 0.1349 | 0.0860 | 0.0236 | 0.9728 |
| 0.0475 | 6.0 | 4068 | 0.1395 | 0.0871 | 0.0239 | 0.9728 |
| 0.0355 | 7.0 | 4746 | 0.1487 | 0.0837 | 0.0230 | 0.9739 |
| 0.0309 | 8.0 | 5424 | 0.1452 | 0.0873 | 0.0240 | 0.9728 |
| 0.0308 | 9.0 | 6102 | 0.1390 | 0.0843 | 0.0228 | 0.9735 |
| 0.0239 | 10.0 | 6780 | 0.1282 | 0.0832 | 0.0224 | 0.9739 |
### Framework versions
- Transformers 4.38.2
- Pytorch 2.2.0
- Datasets 2.18.0
- Tokenizers 0.15.2
|