|
--- |
|
library_name: transformers |
|
license: apache-2.0 |
|
base_model: answerdotai/ModernBERT-base |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- conll2003 |
|
metrics: |
|
- precision |
|
- recall |
|
- f1 |
|
- accuracy |
|
model-index: |
|
- name: ModernBERT-base-finetuned-pos |
|
results: |
|
- task: |
|
name: Token Classification |
|
type: token-classification |
|
dataset: |
|
name: conll2003 |
|
type: conll2003 |
|
config: conll2003 |
|
split: validation |
|
args: conll2003 |
|
metrics: |
|
- name: Precision |
|
type: precision |
|
value: 0.9028893991580559 |
|
- name: Recall |
|
type: recall |
|
value: 0.91583569886212 |
|
- name: F1 |
|
type: f1 |
|
value: 0.9093164709424872 |
|
- name: Accuracy |
|
type: accuracy |
|
value: 0.9267220257724449 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# ModernBERT-base-finetuned-pos |
|
|
|
This model is a fine-tuned version of [answerdotai/ModernBERT-base](https://huggingface.co/answerdotai/ModernBERT-base) on the conll2003 dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.2935 |
|
- Precision: 0.9029 |
|
- Recall: 0.9158 |
|
- F1: 0.9093 |
|
- Accuracy: 0.9267 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 16 |
|
- eval_batch_size: 16 |
|
- seed: 42 |
|
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments |
|
- lr_scheduler_type: linear |
|
- num_epochs: 3 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |
|
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| |
|
| 0.6485 | 1.0 | 878 | 0.3352 | 0.8911 | 0.9007 | 0.8959 | 0.9159 | |
|
| 0.1997 | 2.0 | 1756 | 0.2890 | 0.9031 | 0.9110 | 0.9070 | 0.9246 | |
|
| 0.1274 | 3.0 | 2634 | 0.2935 | 0.9029 | 0.9158 | 0.9093 | 0.9267 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.48.0.dev0 |
|
- Pytorch 2.5.1+cu121 |
|
- Datasets 3.2.0 |
|
- Tokenizers 0.21.0 |
|
|