|
--- |
|
tags: |
|
- image-classification |
|
- timm |
|
- transformers |
|
library_name: timm |
|
license: apache-2.0 |
|
datasets: |
|
- imagenet-1k |
|
--- |
|
# Model card for test_efficientnet.r160_in1k |
|
|
|
A very small test EfficientNet image classification model for testing and sanity checks. Trained on ImageNet-1k by Ross Wightman. |
|
|
|
## Model Details |
|
- **Model Type:** Image classification / feature backbone |
|
- **Model Stats:** |
|
- Params (M): 0.4 |
|
- GMACs: 0.1 |
|
- Activations (M): 0.6 |
|
- Image size: 160 x 160 |
|
- **Dataset:** ImageNet-1k |
|
- **Papers:** |
|
- PyTorch Image Models: https://github.com/huggingface/pytorch-image-models |
|
- **Original:** https://github.com/huggingface/pytorch-image-models |
|
|
|
## Model Usage |
|
### Image Classification |
|
```python |
|
from urllib.request import urlopen |
|
from PIL import Image |
|
import timm |
|
|
|
img = Image.open(urlopen( |
|
'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png' |
|
)) |
|
|
|
model = timm.create_model('test_efficientnet.r160_in1k', pretrained=True) |
|
model = model.eval() |
|
|
|
# get model specific transforms (normalization, resize) |
|
data_config = timm.data.resolve_model_data_config(model) |
|
transforms = timm.data.create_transform(**data_config, is_training=False) |
|
|
|
output = model(transforms(img).unsqueeze(0)) # unsqueeze single image into batch of 1 |
|
|
|
top5_probabilities, top5_class_indices = torch.topk(output.softmax(dim=1) * 100, k=5) |
|
``` |
|
|
|
### Feature Map Extraction |
|
```python |
|
from urllib.request import urlopen |
|
from PIL import Image |
|
import timm |
|
|
|
img = Image.open(urlopen( |
|
'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png' |
|
)) |
|
|
|
model = timm.create_model( |
|
'test_efficientnet.r160_in1k', |
|
pretrained=True, |
|
features_only=True, |
|
) |
|
model = model.eval() |
|
|
|
# get model specific transforms (normalization, resize) |
|
data_config = timm.data.resolve_model_data_config(model) |
|
transforms = timm.data.create_transform(**data_config, is_training=False) |
|
|
|
output = model(transforms(img).unsqueeze(0)) # unsqueeze single image into batch of 1 |
|
|
|
for o in output: |
|
# print shape of each feature map in output |
|
# e.g.: |
|
# torch.Size([1, 16, 80, 80]) |
|
# torch.Size([1, 24, 40, 40]) |
|
# torch.Size([1, 32, 20, 20]) |
|
# torch.Size([1, 48, 10, 10]) |
|
# torch.Size([1, 64, 5, 5]) |
|
|
|
print(o.shape) |
|
``` |
|
|
|
### Image Embeddings |
|
```python |
|
from urllib.request import urlopen |
|
from PIL import Image |
|
import timm |
|
|
|
img = Image.open(urlopen( |
|
'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png' |
|
)) |
|
|
|
model = timm.create_model( |
|
'test_efficientnet.r160_in1k', |
|
pretrained=True, |
|
num_classes=0, # remove classifier nn.Linear |
|
) |
|
model = model.eval() |
|
|
|
# get model specific transforms (normalization, resize) |
|
data_config = timm.data.resolve_model_data_config(model) |
|
transforms = timm.data.create_transform(**data_config, is_training=False) |
|
|
|
output = model(transforms(img).unsqueeze(0)) # output is (batch_size, num_features) shaped tensor |
|
|
|
# or equivalently (without needing to set num_classes=0) |
|
|
|
output = model.forward_features(transforms(img).unsqueeze(0)) |
|
# output is unpooled, a (1, 256, 5, 5) shaped tensor |
|
|
|
output = model.forward_head(output, pre_logits=True) |
|
# output is a (1, num_features) shaped tensor |
|
``` |
|
|
|
## Model Comparison |
|
### By Top-1 |
|
|
|
|model |img_size|top1 |top5 |param_count| |
|
|--------------------------------|--------|------|------|-----------| |
|
|test_convnext3.r160_in1k |192 |54.558|79.356|0.47 | |
|
|test_convnext2.r160_in1k |192 |53.62 |78.636|0.48 | |
|
|test_convnext2.r160_in1k |160 |53.51 |78.526|0.48 | |
|
|test_convnext3.r160_in1k |160 |53.328|78.318|0.47 | |
|
|test_convnext.r160_in1k |192 |48.532|74.944|0.27 | |
|
|test_nfnet.r160_in1k |192 |48.298|73.446|0.38 | |
|
|test_convnext.r160_in1k |160 |47.764|74.152|0.27 | |
|
|test_nfnet.r160_in1k |160 |47.616|72.898|0.38 | |
|
|test_efficientnet.r160_in1k |192 |47.164|71.706|0.36 | |
|
|test_efficientnet_evos.r160_in1k|192 |46.924|71.53 |0.36 | |
|
|test_byobnet.r160_in1k |192 |46.688|71.668|0.46 | |
|
|test_efficientnet_evos.r160_in1k|160 |46.498|71.006|0.36 | |
|
|test_efficientnet.r160_in1k |160 |46.454|71.014|0.36 | |
|
|test_byobnet.r160_in1k |160 |45.852|70.996|0.46 | |
|
|test_efficientnet_ln.r160_in1k |192 |44.538|69.974|0.36 | |
|
|test_efficientnet_gn.r160_in1k |192 |44.448|69.75 |0.36 | |
|
|test_efficientnet_ln.r160_in1k |160 |43.916|69.404|0.36 | |
|
|test_efficientnet_gn.r160_in1k |160 |43.88 |69.162|0.36 | |
|
|test_vit2.r160_in1k |192 |43.454|69.798|0.46 | |
|
|test_resnet.r160_in1k |192 |42.376|68.744|0.47 | |
|
|test_vit2.r160_in1k |160 |42.232|68.982|0.46 | |
|
|test_vit.r160_in1k |192 |41.984|68.64 |0.37 | |
|
|test_resnet.r160_in1k |160 |41.578|67.956|0.47 | |
|
|test_vit.r160_in1k |160 |40.946|67.362|0.37 | |
|
|
|
## Citation |
|
```bibtex |
|
@misc{rw2019timm, |
|
author = {Ross Wightman}, |
|
title = {PyTorch Image Models}, |
|
year = {2019}, |
|
publisher = {GitHub}, |
|
journal = {GitHub repository}, |
|
doi = {10.5281/zenodo.4414861}, |
|
howpublished = {\url{https://github.com/huggingface/pytorch-image-models}} |
|
} |
|
``` |
|
|