|
--- |
|
language: |
|
- en |
|
- de |
|
tags: |
|
- nsp |
|
- next-sentence-prediction |
|
- gpt |
|
datasets: |
|
- wikipedia |
|
metrics: |
|
- accuracy |
|
--- |
|
|
|
# mGPT-nsp |
|
|
|
mGPT-nsp is fine-tuned for Next Sentence Prediction task on the [wikipedia dataset](https://huggingface.co/datasets/wikipedia) using [multilingual GPT](https://huggingface.co/THUMT/mGPT) model. It was introduced in this [paper](https://arxiv.org/abs/2307.07331) and first released on this page. |
|
|
|
## Model description |
|
|
|
mGPT-nsp is a Transformer-based model which was fine-tuned for Next Sentence Prediction task on 11000 English and 11000 German Wikipedia articles. We use the same tokenization and vocabulary as the [mT5 model](https://huggingface.co/google/mt5-base). |
|
|
|
## Intended uses |
|
|
|
- Apply Next Sentence Prediction tasks. (compare the results with BERT models since BERT natively supports this task) |
|
- See how to fine-tune an mGPT2 model using our [code](https://github.com/slds-lmu/stereotypes-multi/tree/main) |
|
- Check our [paper](https://arxiv.org/abs/2307.07331) to see its results |
|
|
|
## How to use |
|
|
|
You can use this model directly with a pipeline for next sentence prediction. Here is how to use this model in PyTorch: |
|
|
|
### Necessary Initialization |
|
```python |
|
from transformers import MT5Tokenizer, GPT2Model |
|
import torch |
|
from huggingface_hub import hf_hub_download |
|
|
|
class ModelNSP(torch.nn.Module): |
|
def __init__(self, pretrained_model="THUMT/mGPT"): |
|
super(ModelNSP, self).__init__() |
|
self.core_model = GPT2Model.from_pretrained(pretrained_model) |
|
self.nsp_head = torch.nn.Sequential(torch.nn.Linear(self.core_model.config.hidden_size, 300), |
|
torch.nn.Linear(300, 300), torch.nn.Linear(300, 2)) |
|
|
|
def forward(self, input_ids, attention_mask=None): |
|
return self.nsp_head(self.core_model(input_ids, attention_mask=attention_mask)[0].mean(dim=1)).softmax(dim=-1) |
|
|
|
model = torch.nn.DataParallel(ModelNSP().eval()) |
|
model.load_state_dict(torch.load(hf_hub_download(repo_id="tolga-ozturk/mGPT-nsp", filename="model_weights.bin"))) |
|
tokenizer = MT5Tokenizer.from_pretrained("tolga-ozturk/mGPT-nsp") |
|
``` |
|
|
|
### Inference |
|
```python |
|
batch_texts = [("In Italy, pizza is presented unsliced.", "The sky is blue."), |
|
("In Italy, pizza is presented unsliced.", "However, it is served sliced in Turkey.")] |
|
encoded_dict = tokenizer.batch_encode_plus(batch_text_or_text_pairs=batch_texts, truncation="longest_first",padding=True, return_tensors="pt", return_attention_mask=True, max_length=256) |
|
print(torch.argmax(model(encoded_dict.input_ids, attention_mask=encoded_dict.attention_mask), dim=-1)) |
|
``` |
|
|
|
### Training Metrics |
|
<img src="https://huggingface.co/tolga-ozturk/mgpt-nsp/resolve/main/metrics.png"> |
|
|
|
## BibTeX entry and citation info |
|
|
|
```bibtex |
|
@misc{title={How Different Is Stereotypical Bias Across Languages?}, |
|
author={Ibrahim Tolga Öztürk and Rostislav Nedelchev and Christian Heumann and Esteban Garces Arias and Marius Roger and Bernd Bischl and Matthias Aßenmacher}, |
|
year={2023}, |
|
eprint={2307.07331}, |
|
archivePrefix={arXiv}, |
|
primaryClass={cs.CL} |
|
} |
|
``` |
|
|
|
The work is done with Ludwig-Maximilians-Universität Statistics group, don't forget to check out [their huggingface page](https://huggingface.co/misoda) for other interesting works! |