File size: 11,510 Bytes
29ffeac
2c2fb0c
 
29ffeac
 
 
 
 
 
 
2c2fb0c
 
29ffeac
 
 
15762c0
 
 
 
 
 
 
 
 
 
29ffeac
 
 
15762c0
29ffeac
 
 
 
 
15762c0
29ffeac
 
 
2c2fb0c
29ffeac
 
 
 
0de9e75
 
 
2c2fb0c
29ffeac
 
15762c0
29ffeac
 
 
2c2fb0c
29ffeac
2c2fb0c
29ffeac
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
15762c0
29ffeac
 
 
 
2c2fb0c
 
 
29ffeac
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
15762c0
29ffeac
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
15762c0
29ffeac
 
 
15762c0
 
29ffeac
 
 
 
 
 
 
 
 
 
 
 
 
 
 
15762c0
29ffeac
 
 
 
 
15762c0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
29ffeac
 
 
 
15762c0
 
29ffeac
 
 
 
 
 
 
 
 
 
 
15762c0
29ffeac
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
---
language: en
license: apache-2.0
library_name: setfit
tags:
- setfit
- absa
- sentence-transformers
- text-classification
- generated_from_setfit_trainer
datasets:
- tomaarsen/setfit-absa-semeval-restaurants
metrics:
- accuracy
widget:
- text: bottles of wine:bottles of wine are cheap and good.
- text: world:I also ordered the Change Mojito, which was out of this world.
- text: bar:We were still sitting at the bar while we drank the sangria, but facing
    away from the bar when we turned back around, the $2 was gone the people next
    to us said the bartender took it.
- text: word:word of advice, save room for pasta dishes and never leave until you've
    had the tiramisu.
- text: bartender:We were still sitting at the bar while we drank the sangria, but
    facing away from the bar when we turned back around, the $2 was gone the people
    next to us said the bartender took it.
pipeline_tag: text-classification
inference: false
co2_eq_emissions:
  emissions: 18.322516829847984
  source: codecarbon
  training_type: fine-tuning
  on_cloud: false
  cpu_model: 13th Gen Intel(R) Core(TM) i7-13700K
  ram_total_size: 31.777088165283203
  hours_used: 0.303
  hardware_used: 1 x NVIDIA GeForce RTX 3090
base_model: BAAI/bge-small-en-v1.5
model-index:
- name: SetFit Aspect Model with BAAI/bge-small-en-v1.5 on SemEval 2014 Task 4 (Restaurants)
  results:
  - task:
      type: text-classification
      name: Text Classification
    dataset:
      name: SemEval 2014 Task 4 (Restaurants)
      type: tomaarsen/setfit-absa-semeval-restaurants
      split: test
    metrics:
    - type: accuracy
      value: 0.8623188405797102
      name: Accuracy
---

# SetFit Aspect Model with BAAI/bge-small-en-v1.5 on SemEval 2014 Task 4 (Restaurants)

This is a [SetFit](https://github.com/huggingface/setfit) model trained on the [SemEval 2014 Task 4 (Restaurants)](https://huggingface.co/datasets/tomaarsen/setfit-absa-semeval-restaurants) dataset that can be used for Aspect Based Sentiment Analysis (ABSA). This SetFit model uses [BAAI/bge-small-en-v1.5](https://huggingface.co/BAAI/bge-small-en-v1.5) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification. In particular, this model is in charge of filtering aspect span candidates.

The model has been trained using an efficient few-shot learning technique that involves:

1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
2. Training a classification head with features from the fine-tuned Sentence Transformer.

This model was trained within the context of a larger system for ABSA, which looks like so:

1. Use a spaCy model to select possible aspect span candidates.
2. **Use this SetFit model to filter these possible aspect span candidates.**
3. Use a SetFit model to classify the filtered aspect span candidates.

## Model Details

### Model Description
- **Model Type:** SetFit
- **Sentence Transformer body:** [BAAI/bge-small-en-v1.5](https://huggingface.co/BAAI/bge-small-en-v1.5)
- **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
- **spaCy Model:** en_core_web_lg
- **SetFitABSA Aspect Model:** [tomaarsen/setfit-absa-bge-small-en-v1.5-restaurants-aspect](https://huggingface.co/tomaarsen/setfit-absa-bge-small-en-v1.5-restaurants-aspect)
- **SetFitABSA Polarity Model:** [tomaarsen/setfit-absa-bge-small-en-v1.5-restaurants-polarity](https://huggingface.co/tomaarsen/setfit-absa-bge-small-en-v1.5-restaurants-polarity)
- **Maximum Sequence Length:** 512 tokens
- **Number of Classes:** 2 classes
- **Training Dataset:** [SemEval 2014 Task 4 (Restaurants)](https://huggingface.co/datasets/tomaarsen/setfit-absa-semeval-restaurants)
- **Language:** en
- **License:** apache-2.0

### Model Sources

- **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
- **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
- **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)

### Model Labels
| Label     | Examples                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|:----------|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| aspect    | <ul><li>'staff:But the staff was so horrible to us.'</li><li>"food:To be completely fair, the only redeeming factor was the food, which was above average, but couldn't make up for all the other deficiencies of Teodora."</li><li>"food:The food is uniformly exceptional, with a very capable kitchen which will proudly whip up whatever you feel like eating, whether it's on the menu or not."</li></ul>                                                                                                                              |
| no aspect | <ul><li>"factor:To be completely fair, the only redeeming factor was the food, which was above average, but couldn't make up for all the other deficiencies of Teodora."</li><li>"deficiencies:To be completely fair, the only redeeming factor was the food, which was above average, but couldn't make up for all the other deficiencies of Teodora."</li><li>"Teodora:To be completely fair, the only redeeming factor was the food, which was above average, but couldn't make up for all the other deficiencies of Teodora."</li></ul> |

## Evaluation

### Metrics
| Label   | Accuracy |
|:--------|:---------|
| **all** | 0.8623   |

## Uses

### Direct Use for Inference

First install the SetFit library:

```bash
pip install setfit
```

Then you can load this model and run inference.

```python
from setfit import AbsaModel

# Download from the 🤗 Hub
model = AbsaModel.from_pretrained(
    "tomaarsen/setfit-absa-bge-small-en-v1.5-restaurants-aspect",
    "tomaarsen/setfit-absa-bge-small-en-v1.5-restaurants-polarity",
)
# Run inference
preds = model("The food was great, but the venue is just way too busy.")
```

<!--
### Downstream Use

*List how someone could finetune this model on their own dataset.*
-->

<!--
### Out-of-Scope Use

*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->

<!--
## Bias, Risks and Limitations

*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->

<!--
### Recommendations

*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->

## Training Details

### Training Set Metrics
| Training set | Min | Median  | Max |
|:-------------|:----|:--------|:----|
| Word count   | 4   | 19.3576 | 45  |

| Label     | Training Sample Count |
|:----------|:----------------------|
| no aspect | 170                   |
| aspect    | 255                   |

### Training Hyperparameters
- batch_size: (256, 256)
- num_epochs: (5, 5)
- max_steps: 5000
- sampling_strategy: oversampling
- body_learning_rate: (2e-05, 1e-05)
- head_learning_rate: 0.01
- loss: CosineSimilarityLoss
- distance_metric: cosine_distance
- margin: 0.25
- end_to_end: False
- use_amp: True
- warmup_proportion: 0.1
- seed: 42
- eval_max_steps: -1
- load_best_model_at_end: True

### Training Results
| Epoch      | Step    | Training Loss | Validation Loss |
|:----------:|:-------:|:-------------:|:---------------:|
| 0.0027     | 1       | 0.2498        | -               |
| 0.1355     | 50      | 0.2442        | -               |
| 0.2710     | 100     | 0.2462        | 0.2496          |
| 0.4065     | 150     | 0.2282        | -               |
| 0.5420     | 200     | 0.0752        | 0.1686          |
| 0.6775     | 250     | 0.0124        | -               |
| 0.8130     | 300     | 0.0128        | 0.1884          |
| 0.9485     | 350     | 0.0062        | -               |
| 1.0840     | 400     | 0.0012        | 0.183           |
| 1.2195     | 450     | 0.0009        | -               |
| 1.3550     | 500     | 0.0008        | 0.2072          |
| 1.4905     | 550     | 0.0031        | -               |
| 1.6260     | 600     | 0.0006        | 0.1716          |
| 1.7615     | 650     | 0.0005        | -               |
| **1.8970** | **700** | **0.0005**    | **0.1666**      |
| 2.0325     | 750     | 0.0005        | -               |
| 2.1680     | 800     | 0.0004        | 0.2086          |
| 2.3035     | 850     | 0.0005        | -               |
| 2.4390     | 900     | 0.0004        | 0.183           |
| 2.5745     | 950     | 0.0004        | -               |
| 2.7100     | 1000    | 0.0036        | 0.1725          |
| 2.8455     | 1050    | 0.0004        | -               |
| 2.9810     | 1100    | 0.0003        | 0.1816          |
| 3.1165     | 1150    | 0.0004        | -               |
| 3.2520     | 1200    | 0.0003        | 0.1802          |

* The bold row denotes the saved checkpoint.
### Environmental Impact
Carbon emissions were measured using [CodeCarbon](https://github.com/mlco2/codecarbon).
- **Carbon Emitted**: 0.018 kg of CO2
- **Hours Used**: 0.303 hours

### Training Hardware
- **On Cloud**: No
- **GPU Model**: 1 x NVIDIA GeForce RTX 3090
- **CPU Model**: 13th Gen Intel(R) Core(TM) i7-13700K
- **RAM Size**: 31.78 GB

### Framework Versions
- Python: 3.9.16
- SetFit: 1.0.0.dev0
- Sentence Transformers: 2.2.2
- spaCy: 3.7.2
- Transformers: 4.29.0
- PyTorch: 1.13.1+cu117
- Datasets: 2.15.0
- Tokenizers: 0.13.3

## Citation

### BibTeX
```bibtex
@article{https://doi.org/10.48550/arxiv.2209.11055,
    doi = {10.48550/ARXIV.2209.11055},
    url = {https://arxiv.org/abs/2209.11055},
    author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
    keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
    title = {Efficient Few-Shot Learning Without Prompts},
    publisher = {arXiv},
    year = {2022},
    copyright = {Creative Commons Attribution 4.0 International}
}
```

<!--
## Glossary

*Clearly define terms in order to be accessible across audiences.*
-->

<!--
## Model Card Authors

*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->

<!--
## Model Card Contact

*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->