metadata
license: cc-by-nc-4.0
datasets:
- turing-motors/LLaVA-Pretrain-JA
- turing-motors/LLaVA-v1.5-Instruct-620K-JA
language:
- ja
pipeline_tag: image-to-text
tags:
- vision
- image-captioning
- VQA
LLaVA-JP Model Card
Model detail
Model type:
LLaVA-JP is a vision-language model that can converse about input images.
This model is an LVLM model trained using google/siglip-so400m-patch14-384 as the image encoder and llm-jp/llm-jp-1.3b-v1.0 as the text decoder. supports the input of 768 x 768 high resolution images by scaling_on_scales method.
Training:
This model was initially trained with the Vision Projector using LLaVA-Pretrain-JA.
In the second phase, it was fine-tuned with LLaVA-v1.5-Instruct-620K-JA.
resources for more information: https://github.com/tosiyuki/LLaVA-JP/tree/main
Comparing VLMs
Model | JA-VG-VQA-500 (ROUGE-L) |
JA-VLM-Bench-In-the-Wild (ROUGE-L) |
Heron-Bench(Detail) | Heron-Bench(Conv) | Heron-Bench(Complex) | Heron-Bench(Average) |
---|---|---|---|---|---|---|
Japanese Stable VLM | - | 40.50 | 25.15 | 51.23 | 37.84 | 38.07 |
EvoVLM-JP-v1-7B | 19.70 | 51.25 | 50.31 | 44.42 | 40.47 | 45.07 |
Heron BLIP Japanese StableLM Base 7B llava-620k | 14.51 | 33.26 | 49.09 | 41.51 | 45.72 | 45.44 |
Heron GIT Japanese StableLM Base 7B | 15.18 | 37.82 | 42.77 | 54.20 | 43.53 | 46.83 |
llava-jp-1.3b-v1.0-620k | 12.69 | 44.58 | 51.21 | 41.05 | 45.95 | 44.84 |
llava-jp-1.3b-v1.1 | 13.33 | 44.40 | 50.00 | 51.83 | 48.98 | 50.39 |
How to use the model
1. Download dependencies
git clone https://github.com/tosiyuki/LLaVA-JP.git
2. Inference
import requests
import torch
import transformers
from PIL import Image
from transformers.generation.streamers import TextStreamer
from llava.constants import DEFAULT_IMAGE_TOKEN, IMAGE_TOKEN_INDEX
from llava.conversation import conv_templates, SeparatorStyle
from llava.model.llava_gpt2 import LlavaGpt2ForCausalLM
from llava.train.arguments_dataclass import ModelArguments, DataArguments, TrainingArguments
from llava.train.dataset import tokenizer_image_token
if __name__ == "__main__":
model_path = 'toshi456/llava-jp-1.3b-v1.1'
device = "cuda" if torch.cuda.is_available() else "cpu"
torch_dtype = torch.bfloat16 if device=="cuda" else torch.float32
model = LlavaGpt2ForCausalLM.from_pretrained(
model_path,
low_cpu_mem_usage=True,
use_safetensors=True,
torch_dtype=torch_dtype,
device_map=device,
)
tokenizer = transformers.AutoTokenizer.from_pretrained(
model_path,
model_max_length=1532,
padding_side="right",
use_fast=False,
)
model.eval()
conv_mode = "v1"
conv = conv_templates[conv_mode].copy()
# image pre-process
image_url = "https://huggingface.co/rinna/bilingual-gpt-neox-4b-minigpt4/resolve/main/sample.jpg"
image = Image.open(requests.get(image_url, stream=True).raw).convert('RGB')
image_size = model.get_model().vision_tower.image_processor.size["height"]
if model.get_model().vision_tower.scales is not None:
image_size = model.get_model().vision_tower.image_processor.size["height"] * len(model.get_model().vision_tower.scales)
if device == "cuda":
image_tensor = model.get_model().vision_tower.image_processor(
image,
return_tensors='pt',
size={"height": image_size, "width": image_size}
)['pixel_values'].half().cuda().to(torch_dtype)
else:
image_tensor = model.get_model().vision_tower.image_processor(
image,
return_tensors='pt',
size={"height": image_size, "width": image_size}
)['pixel_values'].to(torch_dtype)
# create prompt
# ユーザー: <image>\n{prompt}
prompt = "猫の隣には何がありますか?"
inp = DEFAULT_IMAGE_TOKEN + '\n' + prompt
conv.append_message(conv.roles[0], inp)
conv.append_message(conv.roles[1], None)
prompt = conv.get_prompt()
input_ids = tokenizer_image_token(
prompt,
tokenizer,
IMAGE_TOKEN_INDEX,
return_tensors='pt'
).unsqueeze(0)
if device == "cuda":
input_ids = input_ids.to(device)
input_ids = input_ids[:, :-1] # </sep>がinputの最後に入るので削除する
stop_str = conv.sep if conv.sep_style != SeparatorStyle.TWO else conv.sep2
keywords = [stop_str]
streamer = TextStreamer(tokenizer, skip_prompt=True, timeout=20.0)
# predict
with torch.inference_mode():
model.generate(
inputs=input_ids,
images=image_tensor,
do_sample=True,
temperature=0.1,
top_p=1.0,
max_new_tokens=256,
streamer=streamer,
use_cache=True,
)
"""猫の隣にはノートパソコンがあります。"""
Training dataset
Stage1 Pretrain
Stage2 Fine-tuning
Acknowledgement
License
cc-by-nc-4.0