trapoom555's picture
Update README.md
cc2a881 verified
---
license: mit
language:
- en
tags:
- sentence-embedding
- sentence-similarity
- transformers
- feature-extraction
pipeline_tag: sentence-similarity
---
# Phi-2-Text-Embedding-cft
## Description
This is a fine-tuned version of [Phi-2](https://huggingface.co/microsoft/phi-2) to perform Text Embedding tasks. The model is fine-tuned using the Contrastive Fine-tuning and LoRA technique on NLI datasets. The paper can be found [here](https://arxiv.org/abs/2408.00690).
## Base Model
[Phi-2](https://huggingface.co/microsoft/phi-2)
## Usage
1. Clone Phi-2 repository
```bash
git clone https://huggingface.co/microsoft/phi-2
```
2. Change a tokenizer setting in `tokenizer_config.json`
```json
"add_eos_token": true
```
3. Use the model
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
import torch
import numpy as np
class PhiSentenceEmbedding:
def __init__(self, model_path='microsoft/phi-2', adapter_path=None):
self.tokenizer = AutoTokenizer.from_pretrained(model_path)
self.model = AutoModelForCausalLM.from_pretrained(model_path,
torch_dtype=torch.bfloat16,
device_map='cuda',
trust_remote_code=True)
if adapter_path != None:
# Load fine-tuned LoRA
self.model.load_adapter(adapter_path)
def get_last_hidden_state(self, text):
inputs = self.tokenizer(text, return_tensors="pt").to('cuda')
with torch.no_grad():
out = self.model(**inputs, output_hidden_states=True).hidden_states[-1][0, -1, :]
return out.squeeze().float().cpu().numpy()
def encode(self, sentences: list[str], **kwargs) -> list[np.ndarray]:
"""
Returns a list of embeddings for the given sentences.
Args:
sentences: List of sentences to encode
Returns:
List of embeddings for the given sentences
"""
out = []
for s in sentences:
out.append(self.get_last_hidden_state(s))
return out
phi_sentence_embedding = PhiSentenceEmbedding(<your-cloned-base-model-path>, 'trapoom555/Phi-2-Text-Embedding-cft')
example_sentences = ["I don't like apples", "I like apples"]
encoded_sentences = phi_sentence_embedding.encode(example_sentences)
print(encoded_sentences)
```
## Training Details
| **Training Details** | **Value** |
|-------------------------|-------------------|
| Loss | InfoNCE |
| Batch Size | 60 |
| InfoNCE Temperature | 0.05 |
| Learning Rate | 5e-05 |
| Warmup Steps | 100 |
| Learning Rate Scheduler | CosineAnnealingLR |
| LoRA Rank | 8 |
| LoRA Alpha | 32 |
| LoRA Dropout | 0.1 |
| Training Precision | bf16 |
| Max Epoch | 1 |
| GPU | RTX3090 |
| Num GPUs | 4 |
## Training Scripts
The training script for this model is written in this [Github repository](https://github.com/trapoom555/Language-Model-STS-CFT/tree/main).
## Checkpoints
We provide checkpoints every 500 training steps which can be found [here](https://huggingface.co/trapoom555/Phi-2-Text-Embedding-cft-checkpoints).
## Evaluation Results
| **Benchmarks** | **Before cft** | **After cft** |
|----------------|----------------|---------------|
| STS12 | 23.04 | 61.62 |
| STS13 | 20.79 | 71.87 |
| STS14 | 17.06 | 60.46 |
| STS15 | 24.56 | 71.18 |
| STS16 | 48.68 | 74.77 |
| STS17 | 41.43 | 80.20 |
| STSBenchmark | 37.87 | 79.46 |
| BOISSES | 28.04 | 64.06 |
| SICK-R | 48.40 | 74.37 |
| **Overall** | **32.21** | **70.89** |
## Contributors
Trapoom Ukarapol, Zhicheng Lee, Amy Xin
## Foot Notes
This work is the final project of the Natural Language Processing Spring 2024 course at Tsinghua University 🟣. We would like to express our sincere gratitude to this course !