SentenceTransformer based on distilbert/distilbert-base-uncased
This is a sentence-transformers model finetuned from distilbert/distilbert-base-uncased. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: distilbert/distilbert-base-uncased
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 768 tokens
- Similarity Function: Cosine Similarity
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: DistilBertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("trbeers/distilbert-base-uncased-sts")
# Run inference
sentences = [
'Knowledge of medical equipment and veterinary terminology is necessary.',
'Worked as a pet trainer for obedience classes',
'Skilled in component sorting for various projects',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Semantic Similarity
- Dataset:
sts-dev
- Evaluated with
EmbeddingSimilarityEvaluator
Metric | Value |
---|---|
pearson_cosine | 0.9243 |
spearman_cosine | 0.8484 |
pearson_manhattan | 0.9053 |
spearman_manhattan | 0.8466 |
pearson_euclidean | 0.9058 |
spearman_euclidean | 0.8467 |
pearson_dot | 0.9171 |
spearman_dot | 0.8473 |
pearson_max | 0.9243 |
spearman_max | 0.8484 |
Semantic Similarity
- Dataset:
sts-test
- Evaluated with
EmbeddingSimilarityEvaluator
Metric | Value |
---|---|
pearson_cosine | 0.9188 |
spearman_cosine | 0.8447 |
pearson_manhattan | 0.8976 |
spearman_manhattan | 0.8409 |
pearson_euclidean | 0.8981 |
spearman_euclidean | 0.8413 |
pearson_dot | 0.9109 |
spearman_dot | 0.8439 |
pearson_max | 0.9188 |
spearman_max | 0.8447 |
Training Details
Training Dataset
Unnamed Dataset
- Size: 8,137 training samples
- Columns:
sentence1
,sentence2
, andscore
- Approximate statistics based on the first 1000 samples:
sentence1 sentence2 score type string string int details - min: 6 tokens
- mean: 16.34 tokens
- max: 40 tokens
- min: 5 tokens
- mean: 9.58 tokens
- max: 24 tokens
- 0: ~49.50%
- 1: ~50.50%
- Samples:
sentence1 sentence2 score Ability to use tools such as power drills as required for the job.
Proficient in operating power tools for installation tasks
1
Experience with networking, specifically the TCP/IP stack, routing, ports, and services is essential.
Designed user interfaces for web applications
0
Ability to establish and maintain positive relationships with coaches, student-athletes, and vendors regarding equipment selection.
Developed strong partnerships with vendors forEquipment procurement
1
- Loss:
CosineSimilarityLoss
with these parameters:{ "loss_fct": "torch.nn.modules.loss.MSELoss" }
Evaluation Dataset
Unnamed Dataset
- Size: 2,035 evaluation samples
- Columns:
sentence1
,sentence2
, andscore
- Approximate statistics based on the first 1000 samples:
sentence1 sentence2 score type string string int details - min: 6 tokens
- mean: 15.77 tokens
- max: 34 tokens
- min: 5 tokens
- mean: 9.65 tokens
- max: 21 tokens
- 0: ~48.10%
- 1: ~51.90%
- Samples:
sentence1 sentence2 score Experience with vulnerability management tools like Nessus and Nexpose.
managed network configurations
0
Willingness to obtain a Texas fire extinguishers license as necessary.
Currently pursuing a Texas fire extinguishers license
1
Experience in defining and maintaining enterprise architecture that supports business scalability.
Led the development of enterprise architecture frameworks for a multinational corporation
1
- Loss:
CosineSimilarityLoss
with these parameters:{ "loss_fct": "torch.nn.modules.loss.MSELoss" }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: stepsper_device_train_batch_size
: 16per_device_eval_batch_size
: 16num_train_epochs
: 4warmup_ratio
: 0.1
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: stepsprediction_loss_only
: Trueper_device_train_batch_size
: 16per_device_eval_batch_size
: 16per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonelearning_rate
: 5e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 4max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.1warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Falsefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Falsehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseeval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falsebatch_sampler
: batch_samplermulti_dataset_batch_sampler
: proportional
Training Logs
Epoch | Step | Training Loss | loss | sts-dev_spearman_cosine | sts-test_spearman_cosine |
---|---|---|---|---|---|
0.1965 | 100 | 0.1588 | 0.0884 | 0.8247 | - |
0.3929 | 200 | 0.0784 | 0.0686 | 0.8397 | - |
0.5894 | 300 | 0.067 | 0.0538 | 0.8455 | - |
0.7859 | 400 | 0.0626 | 0.0482 | 0.8450 | - |
0.9823 | 500 | 0.0533 | 0.0452 | 0.8454 | - |
1.1788 | 600 | 0.0346 | 0.0437 | 0.8434 | - |
1.3752 | 700 | 0.0328 | 0.0435 | 0.8465 | - |
1.5717 | 800 | 0.0306 | 0.0445 | 0.8465 | - |
1.7682 | 900 | 0.0317 | 0.0399 | 0.8481 | - |
1.9646 | 1000 | 0.0315 | 0.0448 | 0.8517 | - |
2.1611 | 1100 | 0.017 | 0.0388 | 0.8489 | - |
2.3576 | 1200 | 0.016 | 0.0396 | 0.8501 | - |
2.5540 | 1300 | 0.0129 | 0.0393 | 0.8465 | - |
2.7505 | 1400 | 0.0128 | 0.0396 | 0.8471 | - |
2.9470 | 1500 | 0.0147 | 0.0388 | 0.8483 | - |
3.1434 | 1600 | 0.009 | 0.0396 | 0.8460 | - |
3.3399 | 1700 | 0.0078 | 0.0390 | 0.8460 | - |
3.5363 | 1800 | 0.0063 | 0.0380 | 0.8475 | - |
3.7328 | 1900 | 0.0079 | 0.0377 | 0.8484 | - |
3.9293 | 2000 | 0.0062 | 0.0376 | 0.8484 | - |
4.0 | 2036 | - | - | - | 0.8447 |
Framework Versions
- Python: 3.10.11
- Sentence Transformers: 3.0.1
- Transformers: 4.41.2
- PyTorch: 2.3.1
- Accelerate: 0.31.0
- Datasets: 2.19.1
- Tokenizers: 0.19.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
- Downloads last month
- 7
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for trbeers/distilbert-base-uncased-sts
Base model
distilbert/distilbert-base-uncasedEvaluation results
- Pearson Cosine on sts devself-reported0.924
- Spearman Cosine on sts devself-reported0.848
- Pearson Manhattan on sts devself-reported0.905
- Spearman Manhattan on sts devself-reported0.847
- Pearson Euclidean on sts devself-reported0.906
- Spearman Euclidean on sts devself-reported0.847
- Pearson Dot on sts devself-reported0.917
- Spearman Dot on sts devself-reported0.847
- Pearson Max on sts devself-reported0.924
- Spearman Max on sts devself-reported0.848