metadata
language: []
library_name: sentence-transformers
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:8137
- loss:CosineSimilarityLoss
base_model: distilbert/distilbert-base-uncased
datasets: []
metrics:
- pearson_cosine
- spearman_cosine
- pearson_manhattan
- spearman_manhattan
- pearson_euclidean
- spearman_euclidean
- pearson_dot
- spearman_dot
- pearson_max
- spearman_max
widget:
- source_sentence: Proficient in chemical or plasma cleaning methods.
sentences:
- Skilled in circuit board assembly
- Created custom reports in Workday for HR metrics
- Developed a website using HTML and CSS
- source_sentence: >-
Expertise in data modeling, SQL query design, and execution, preferably in
the financial services sector.
sentences:
- over 2 years of working in a retail customer support role
- Operated a forklift for material handling
- Proficient in crafting SQL queries for large datasets
- source_sentence: >-
The ability to collaborate across teams and adapt to a fast-paced
environment is highly valued.
sentences:
- >-
Demonstrated flexibility in meeting tight deadlines while working with
cross-functional teams
- Processed confidential client documents with high attention to detail
- Assisted with quality control checks on finished products
- source_sentence: >-
Experience advocating for clients while effectively managing tough
conversations.
sentences:
- Designed responsive web layouts with HTML and CSS
- managed BIM coordination projects using Navisworks
- Focused solely on administrative tasks without client involvement
- source_sentence: Knowledge of medical equipment and veterinary terminology is necessary.
sentences:
- Conducted electrical system design reviews
- Skilled in component sorting for various projects
- Worked as a pet trainer for obedience classes
pipeline_tag: sentence-similarity
model-index:
- name: SentenceTransformer based on distilbert/distilbert-base-uncased
results:
- task:
type: semantic-similarity
name: Semantic Similarity
dataset:
name: sts dev
type: sts-dev
metrics:
- type: pearson_cosine
value: 0.924349195128016
name: Pearson Cosine
- type: spearman_cosine
value: 0.8484422411286455
name: Spearman Cosine
- type: pearson_manhattan
value: 0.905333549482094
name: Pearson Manhattan
- type: spearman_manhattan
value: 0.8466001874220329
name: Spearman Manhattan
- type: pearson_euclidean
value: 0.9058195955220477
name: Pearson Euclidean
- type: spearman_euclidean
value: 0.8467373800357263
name: Spearman Euclidean
- type: pearson_dot
value: 0.9171267699712237
name: Pearson Dot
- type: spearman_dot
value: 0.8472543590835093
name: Spearman Dot
- type: pearson_max
value: 0.924349195128016
name: Pearson Max
- type: spearman_max
value: 0.8484422411286455
name: Spearman Max
- task:
type: semantic-similarity
name: Semantic Similarity
dataset:
name: sts test
type: sts-test
metrics:
- type: pearson_cosine
value: 0.9188359916169351
name: Pearson Cosine
- type: spearman_cosine
value: 0.8446914904867927
name: Spearman Cosine
- type: pearson_manhattan
value: 0.8975506707051996
name: Pearson Manhattan
- type: spearman_manhattan
value: 0.8409328944635871
name: Spearman Manhattan
- type: pearson_euclidean
value: 0.8980683704843317
name: Pearson Euclidean
- type: spearman_euclidean
value: 0.8413207901292724
name: Spearman Euclidean
- type: pearson_dot
value: 0.9108792364321198
name: Pearson Dot
- type: spearman_dot
value: 0.8438956330799119
name: Spearman Dot
- type: pearson_max
value: 0.9188359916169351
name: Pearson Max
- type: spearman_max
value: 0.8446914904867927
name: Spearman Max
SentenceTransformer based on distilbert/distilbert-base-uncased
This is a sentence-transformers model finetuned from distilbert/distilbert-base-uncased. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: distilbert/distilbert-base-uncased
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 768 tokens
- Similarity Function: Cosine Similarity
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: DistilBertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("trbeers/distilbert-base-uncased-sts")
# Run inference
sentences = [
'Knowledge of medical equipment and veterinary terminology is necessary.',
'Worked as a pet trainer for obedience classes',
'Skilled in component sorting for various projects',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Semantic Similarity
- Dataset:
sts-dev
- Evaluated with
EmbeddingSimilarityEvaluator
Metric | Value |
---|---|
pearson_cosine | 0.9243 |
spearman_cosine | 0.8484 |
pearson_manhattan | 0.9053 |
spearman_manhattan | 0.8466 |
pearson_euclidean | 0.9058 |
spearman_euclidean | 0.8467 |
pearson_dot | 0.9171 |
spearman_dot | 0.8473 |
pearson_max | 0.9243 |
spearman_max | 0.8484 |
Semantic Similarity
- Dataset:
sts-test
- Evaluated with
EmbeddingSimilarityEvaluator
Metric | Value |
---|---|
pearson_cosine | 0.9188 |
spearman_cosine | 0.8447 |
pearson_manhattan | 0.8976 |
spearman_manhattan | 0.8409 |
pearson_euclidean | 0.8981 |
spearman_euclidean | 0.8413 |
pearson_dot | 0.9109 |
spearman_dot | 0.8439 |
pearson_max | 0.9188 |
spearman_max | 0.8447 |
Training Details
Training Dataset
Unnamed Dataset
- Size: 8,137 training samples
- Columns:
sentence1
,sentence2
, andscore
- Approximate statistics based on the first 1000 samples:
sentence1 sentence2 score type string string int details - min: 6 tokens
- mean: 16.34 tokens
- max: 40 tokens
- min: 5 tokens
- mean: 9.58 tokens
- max: 24 tokens
- 0: ~49.50%
- 1: ~50.50%
- Samples:
sentence1 sentence2 score Ability to use tools such as power drills as required for the job.
Proficient in operating power tools for installation tasks
1
Experience with networking, specifically the TCP/IP stack, routing, ports, and services is essential.
Designed user interfaces for web applications
0
Ability to establish and maintain positive relationships with coaches, student-athletes, and vendors regarding equipment selection.
Developed strong partnerships with vendors forEquipment procurement
1
- Loss:
CosineSimilarityLoss
with these parameters:{ "loss_fct": "torch.nn.modules.loss.MSELoss" }
Evaluation Dataset
Unnamed Dataset
- Size: 2,035 evaluation samples
- Columns:
sentence1
,sentence2
, andscore
- Approximate statistics based on the first 1000 samples:
sentence1 sentence2 score type string string int details - min: 6 tokens
- mean: 15.77 tokens
- max: 34 tokens
- min: 5 tokens
- mean: 9.65 tokens
- max: 21 tokens
- 0: ~48.10%
- 1: ~51.90%
- Samples:
sentence1 sentence2 score Experience with vulnerability management tools like Nessus and Nexpose.
managed network configurations
0
Willingness to obtain a Texas fire extinguishers license as necessary.
Currently pursuing a Texas fire extinguishers license
1
Experience in defining and maintaining enterprise architecture that supports business scalability.
Led the development of enterprise architecture frameworks for a multinational corporation
1
- Loss:
CosineSimilarityLoss
with these parameters:{ "loss_fct": "torch.nn.modules.loss.MSELoss" }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: stepsper_device_train_batch_size
: 16per_device_eval_batch_size
: 16num_train_epochs
: 4warmup_ratio
: 0.1
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: stepsprediction_loss_only
: Trueper_device_train_batch_size
: 16per_device_eval_batch_size
: 16per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonelearning_rate
: 5e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 4max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.1warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Falsefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Falsehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseeval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falsebatch_sampler
: batch_samplermulti_dataset_batch_sampler
: proportional
Training Logs
Epoch | Step | Training Loss | loss | sts-dev_spearman_cosine | sts-test_spearman_cosine |
---|---|---|---|---|---|
0.1965 | 100 | 0.1588 | 0.0884 | 0.8247 | - |
0.3929 | 200 | 0.0784 | 0.0686 | 0.8397 | - |
0.5894 | 300 | 0.067 | 0.0538 | 0.8455 | - |
0.7859 | 400 | 0.0626 | 0.0482 | 0.8450 | - |
0.9823 | 500 | 0.0533 | 0.0452 | 0.8454 | - |
1.1788 | 600 | 0.0346 | 0.0437 | 0.8434 | - |
1.3752 | 700 | 0.0328 | 0.0435 | 0.8465 | - |
1.5717 | 800 | 0.0306 | 0.0445 | 0.8465 | - |
1.7682 | 900 | 0.0317 | 0.0399 | 0.8481 | - |
1.9646 | 1000 | 0.0315 | 0.0448 | 0.8517 | - |
2.1611 | 1100 | 0.017 | 0.0388 | 0.8489 | - |
2.3576 | 1200 | 0.016 | 0.0396 | 0.8501 | - |
2.5540 | 1300 | 0.0129 | 0.0393 | 0.8465 | - |
2.7505 | 1400 | 0.0128 | 0.0396 | 0.8471 | - |
2.9470 | 1500 | 0.0147 | 0.0388 | 0.8483 | - |
3.1434 | 1600 | 0.009 | 0.0396 | 0.8460 | - |
3.3399 | 1700 | 0.0078 | 0.0390 | 0.8460 | - |
3.5363 | 1800 | 0.0063 | 0.0380 | 0.8475 | - |
3.7328 | 1900 | 0.0079 | 0.0377 | 0.8484 | - |
3.9293 | 2000 | 0.0062 | 0.0376 | 0.8484 | - |
4.0 | 2036 | - | - | - | 0.8447 |
Framework Versions
- Python: 3.10.11
- Sentence Transformers: 3.0.1
- Transformers: 4.41.2
- PyTorch: 2.3.1
- Accelerate: 0.31.0
- Datasets: 2.19.1
- Tokenizers: 0.19.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}