|
---
|
|
library_name: transformers
|
|
license: mit
|
|
base_model: indobenchmark/indobert-base-p1
|
|
tags:
|
|
- generated_from_trainer
|
|
metrics:
|
|
- accuracy
|
|
- f1
|
|
- precision
|
|
- recall
|
|
model-index:
|
|
- name: indobert-hoax-detection
|
|
results: []
|
|
---
|
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
|
should probably proofread and complete it, then remove this comment. -->
|
|
|
|
# indobert-hoax-detection
|
|
|
|
This model is a fine-tuned version of [indobenchmark/indobert-base-p1](https://huggingface.co/indobenchmark/indobert-base-p1) on an unknown dataset.
|
|
It achieves the following results on the evaluation set:
|
|
- Loss: 0.0556
|
|
- Accuracy: 0.9831
|
|
- F1: 0.9823
|
|
- Precision: 0.9781
|
|
- Recall: 0.9865
|
|
|
|
## Model description
|
|
|
|
More information needed
|
|
|
|
## Intended uses & limitations
|
|
|
|
More information needed
|
|
|
|
## Training and evaluation data
|
|
|
|
More information needed
|
|
|
|
## Training procedure
|
|
|
|
### Training hyperparameters
|
|
|
|
The following hyperparameters were used during training:
|
|
- learning_rate: 2e-05
|
|
- train_batch_size: 32
|
|
- eval_batch_size: 32
|
|
- seed: 42
|
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
|
- lr_scheduler_type: linear
|
|
- num_epochs: 3
|
|
|
|
### Training results
|
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall |
|
|
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:|
|
|
| 0.0797 | 1.0 | 739 | 0.0485 | 0.9882 | 0.9876 | 0.9858 | 0.9893 |
|
|
| 0.0428 | 2.0 | 1478 | 0.0436 | 0.9868 | 0.9862 | 0.9817 | 0.9908 |
|
|
| 0.0221 | 3.0 | 2217 | 0.0480 | 0.9885 | 0.9879 | 0.9879 | 0.9879 |
|
|
|
|
|
|
### Framework versions
|
|
|
|
- Transformers 4.45.2
|
|
- Pytorch 2.4.1
|
|
- Datasets 2.19.2
|
|
- Tokenizers 0.20.1
|
|
|