bert-base-sst-nlp-2 / README.md
uvamba's picture
Upload latest checkpoint with model card
0207b5a
# Model Card for BERT-base Sentiment Analysis Model
## Model Details
This model is a fine-tuned version of BERT-base for sentiment analysis tasks.
## Training Data
The model was trained on the Rotten Tomatoes dataset.
## Training Procedure
- **Learning Rate**: 2e-5
- **Epochs**: 3
- **Batch Size**: 16
๊ฐ€๋Šฅํ•˜๋ฉด ๋‹ค๋ฅธ ์‚ฌ๋žŒ๋“ค๋„ ๋˜‘๊ฐ™์€ ๋ฒ„ํŠธ๋ชจ๋ธ, ๋กœํŠผ ํ† ๋ฉ”ํ† ๋ฅผ ์ด์šฉํ–ˆ์„ ๋•Œ ์žฌํ˜„๊ฐ€๋Šฅํ•˜๋„๋ก ํ•˜๋Š” ๋ชจ๋“  ํ•˜์ดํผ ํŒŒ๋ผ๋ฏธํ„ฐ๋“ค์„ ๋‹ค ์ ์–ด๋ผ
## How to Use ํ—ˆ๊น… ํŽ˜์ด์Šค ์“ธ ๋•Œ ์–ด๋–ค ๊ฒƒ์„ ์“ฐ๋ฉด ๋œ๋‹ค๋Š” ๊ฑธ ์•Œ๋ ค์ฃผ๋Š” ๊ฒƒ
```python
from transformers import AutoTokenizer, AutoModelForSequenceClassification
tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased")
model = AutoModelForSequenceClassification.from_pretrained("bert-base-uncased")
input_text = "The movie was fantastic with a gripping storyline!"
inputs = tokenizer.encode(input_text, return_tensors="pt")
outputs = model(inputs)
print(outputs.logits)
```
## Evaluation ํ‰๊ฐ€ ๊ฒฐ๊ณผ
- **Accuracy**: 81.97%
## Limitations ์•ฝ์ ์€ ๋ญ๊ฐ€ ์žˆ๋‹ค๋Š” ๊ฒƒ
The model may generate biased or inappropriate content
due to the nature of the training data.
It is recommended to use the model with caution and apply necessary filters.
## Ethical Considerations
- **Bias**: The model may inherit biases present in the training data.
- **Misuse**: The model can be misused to generate misleading or harmful content.
## Copyright and License
This model is licensed under the MIT License.