|
--- |
|
tags: |
|
- mteb |
|
- sentence-similarity |
|
- sentence-transformers |
|
- Sentence Transformers |
|
model-index: |
|
- name: gte-small |
|
results: |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_counterfactual |
|
name: MTEB AmazonCounterfactualClassification (en) |
|
config: en |
|
split: test |
|
revision: e8379541af4e31359cca9fbcf4b00f2671dba205 |
|
metrics: |
|
- type: accuracy |
|
value: 73.22388059701493 |
|
- type: ap |
|
value: 36.09895941426988 |
|
- type: f1 |
|
value: 67.3205651539195 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_polarity |
|
name: MTEB AmazonPolarityClassification |
|
config: default |
|
split: test |
|
revision: e2d317d38cd51312af73b3d32a06d1a08b442046 |
|
metrics: |
|
- type: accuracy |
|
value: 91.81894999999999 |
|
- type: ap |
|
value: 88.5240138417305 |
|
- type: f1 |
|
value: 91.80367382706962 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_reviews_multi |
|
name: MTEB AmazonReviewsClassification (en) |
|
config: en |
|
split: test |
|
revision: 1399c76144fd37290681b995c656ef9b2e06e26d |
|
metrics: |
|
- type: accuracy |
|
value: 48.032 |
|
- type: f1 |
|
value: 47.4490665674719 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: arguana |
|
name: MTEB ArguAna |
|
config: default |
|
split: test |
|
revision: None |
|
metrics: |
|
- type: map_at_1 |
|
value: 30.725 |
|
- type: map_at_10 |
|
value: 46.604 |
|
- type: map_at_100 |
|
value: 47.535 |
|
- type: map_at_1000 |
|
value: 47.538000000000004 |
|
- type: map_at_3 |
|
value: 41.833 |
|
- type: map_at_5 |
|
value: 44.61 |
|
- type: mrr_at_1 |
|
value: 31.223 |
|
- type: mrr_at_10 |
|
value: 46.794000000000004 |
|
- type: mrr_at_100 |
|
value: 47.725 |
|
- type: mrr_at_1000 |
|
value: 47.727000000000004 |
|
- type: mrr_at_3 |
|
value: 42.07 |
|
- type: mrr_at_5 |
|
value: 44.812000000000005 |
|
- type: ndcg_at_1 |
|
value: 30.725 |
|
- type: ndcg_at_10 |
|
value: 55.440999999999995 |
|
- type: ndcg_at_100 |
|
value: 59.134 |
|
- type: ndcg_at_1000 |
|
value: 59.199 |
|
- type: ndcg_at_3 |
|
value: 45.599000000000004 |
|
- type: ndcg_at_5 |
|
value: 50.637 |
|
- type: precision_at_1 |
|
value: 30.725 |
|
- type: precision_at_10 |
|
value: 8.364 |
|
- type: precision_at_100 |
|
value: 0.991 |
|
- type: precision_at_1000 |
|
value: 0.1 |
|
- type: precision_at_3 |
|
value: 18.848000000000003 |
|
- type: precision_at_5 |
|
value: 13.77 |
|
- type: recall_at_1 |
|
value: 30.725 |
|
- type: recall_at_10 |
|
value: 83.64200000000001 |
|
- type: recall_at_100 |
|
value: 99.14699999999999 |
|
- type: recall_at_1000 |
|
value: 99.644 |
|
- type: recall_at_3 |
|
value: 56.543 |
|
- type: recall_at_5 |
|
value: 68.848 |
|
- task: |
|
type: Clustering |
|
dataset: |
|
type: mteb/arxiv-clustering-p2p |
|
name: MTEB ArxivClusteringP2P |
|
config: default |
|
split: test |
|
revision: a122ad7f3f0291bf49cc6f4d32aa80929df69d5d |
|
metrics: |
|
- type: v_measure |
|
value: 47.90178078197678 |
|
- task: |
|
type: Clustering |
|
dataset: |
|
type: mteb/arxiv-clustering-s2s |
|
name: MTEB ArxivClusteringS2S |
|
config: default |
|
split: test |
|
revision: f910caf1a6075f7329cdf8c1a6135696f37dbd53 |
|
metrics: |
|
- type: v_measure |
|
value: 40.25728393431922 |
|
- task: |
|
type: Reranking |
|
dataset: |
|
type: mteb/askubuntudupquestions-reranking |
|
name: MTEB AskUbuntuDupQuestions |
|
config: default |
|
split: test |
|
revision: 2000358ca161889fa9c082cb41daa8dcfb161a54 |
|
metrics: |
|
- type: map |
|
value: 61.720297062897764 |
|
- type: mrr |
|
value: 75.24139295607439 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: mteb/biosses-sts |
|
name: MTEB BIOSSES |
|
config: default |
|
split: test |
|
revision: d3fb88f8f02e40887cd149695127462bbcf29b4a |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 89.43527309184616 |
|
- type: cos_sim_spearman |
|
value: 88.17128615100206 |
|
- type: euclidean_pearson |
|
value: 87.89922623089282 |
|
- type: euclidean_spearman |
|
value: 87.96104039655451 |
|
- type: manhattan_pearson |
|
value: 87.9818290932077 |
|
- type: manhattan_spearman |
|
value: 88.00923426576885 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/banking77 |
|
name: MTEB Banking77Classification |
|
config: default |
|
split: test |
|
revision: 0fd18e25b25c072e09e0d92ab615fda904d66300 |
|
metrics: |
|
- type: accuracy |
|
value: 84.0844155844156 |
|
- type: f1 |
|
value: 84.01485017302213 |
|
- task: |
|
type: Clustering |
|
dataset: |
|
type: mteb/biorxiv-clustering-p2p |
|
name: MTEB BiorxivClusteringP2P |
|
config: default |
|
split: test |
|
revision: 65b79d1d13f80053f67aca9498d9402c2d9f1f40 |
|
metrics: |
|
- type: v_measure |
|
value: 38.36574769259432 |
|
- task: |
|
type: Clustering |
|
dataset: |
|
type: mteb/biorxiv-clustering-s2s |
|
name: MTEB BiorxivClusteringS2S |
|
config: default |
|
split: test |
|
revision: 258694dd0231531bc1fd9de6ceb52a0853c6d908 |
|
metrics: |
|
- type: v_measure |
|
value: 35.4857033165287 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: BeIR/cqadupstack |
|
name: MTEB CQADupstackAndroidRetrieval |
|
config: default |
|
split: test |
|
revision: None |
|
metrics: |
|
- type: map_at_1 |
|
value: 30.261 |
|
- type: map_at_10 |
|
value: 42.419000000000004 |
|
- type: map_at_100 |
|
value: 43.927 |
|
- type: map_at_1000 |
|
value: 44.055 |
|
- type: map_at_3 |
|
value: 38.597 |
|
- type: map_at_5 |
|
value: 40.701 |
|
- type: mrr_at_1 |
|
value: 36.91 |
|
- type: mrr_at_10 |
|
value: 48.02 |
|
- type: mrr_at_100 |
|
value: 48.658 |
|
- type: mrr_at_1000 |
|
value: 48.708 |
|
- type: mrr_at_3 |
|
value: 44.945 |
|
- type: mrr_at_5 |
|
value: 46.705000000000005 |
|
- type: ndcg_at_1 |
|
value: 36.91 |
|
- type: ndcg_at_10 |
|
value: 49.353 |
|
- type: ndcg_at_100 |
|
value: 54.456 |
|
- type: ndcg_at_1000 |
|
value: 56.363 |
|
- type: ndcg_at_3 |
|
value: 43.483 |
|
- type: ndcg_at_5 |
|
value: 46.150999999999996 |
|
- type: precision_at_1 |
|
value: 36.91 |
|
- type: precision_at_10 |
|
value: 9.700000000000001 |
|
- type: precision_at_100 |
|
value: 1.557 |
|
- type: precision_at_1000 |
|
value: 0.202 |
|
- type: precision_at_3 |
|
value: 21.078 |
|
- type: precision_at_5 |
|
value: 15.421999999999999 |
|
- type: recall_at_1 |
|
value: 30.261 |
|
- type: recall_at_10 |
|
value: 63.242 |
|
- type: recall_at_100 |
|
value: 84.09100000000001 |
|
- type: recall_at_1000 |
|
value: 96.143 |
|
- type: recall_at_3 |
|
value: 46.478 |
|
- type: recall_at_5 |
|
value: 53.708 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: BeIR/cqadupstack |
|
name: MTEB CQADupstackEnglishRetrieval |
|
config: default |
|
split: test |
|
revision: None |
|
metrics: |
|
- type: map_at_1 |
|
value: 31.145 |
|
- type: map_at_10 |
|
value: 40.996 |
|
- type: map_at_100 |
|
value: 42.266999999999996 |
|
- type: map_at_1000 |
|
value: 42.397 |
|
- type: map_at_3 |
|
value: 38.005 |
|
- type: map_at_5 |
|
value: 39.628 |
|
- type: mrr_at_1 |
|
value: 38.344 |
|
- type: mrr_at_10 |
|
value: 46.827000000000005 |
|
- type: mrr_at_100 |
|
value: 47.446 |
|
- type: mrr_at_1000 |
|
value: 47.489 |
|
- type: mrr_at_3 |
|
value: 44.448 |
|
- type: mrr_at_5 |
|
value: 45.747 |
|
- type: ndcg_at_1 |
|
value: 38.344 |
|
- type: ndcg_at_10 |
|
value: 46.733000000000004 |
|
- type: ndcg_at_100 |
|
value: 51.103 |
|
- type: ndcg_at_1000 |
|
value: 53.075 |
|
- type: ndcg_at_3 |
|
value: 42.366 |
|
- type: ndcg_at_5 |
|
value: 44.242 |
|
- type: precision_at_1 |
|
value: 38.344 |
|
- type: precision_at_10 |
|
value: 8.822000000000001 |
|
- type: precision_at_100 |
|
value: 1.417 |
|
- type: precision_at_1000 |
|
value: 0.187 |
|
- type: precision_at_3 |
|
value: 20.403 |
|
- type: precision_at_5 |
|
value: 14.306 |
|
- type: recall_at_1 |
|
value: 31.145 |
|
- type: recall_at_10 |
|
value: 56.909 |
|
- type: recall_at_100 |
|
value: 75.274 |
|
- type: recall_at_1000 |
|
value: 87.629 |
|
- type: recall_at_3 |
|
value: 43.784 |
|
- type: recall_at_5 |
|
value: 49.338 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: BeIR/cqadupstack |
|
name: MTEB CQADupstackGamingRetrieval |
|
config: default |
|
split: test |
|
revision: None |
|
metrics: |
|
- type: map_at_1 |
|
value: 38.83 |
|
- type: map_at_10 |
|
value: 51.553000000000004 |
|
- type: map_at_100 |
|
value: 52.581 |
|
- type: map_at_1000 |
|
value: 52.638 |
|
- type: map_at_3 |
|
value: 48.112 |
|
- type: map_at_5 |
|
value: 50.095 |
|
- type: mrr_at_1 |
|
value: 44.513999999999996 |
|
- type: mrr_at_10 |
|
value: 54.998000000000005 |
|
- type: mrr_at_100 |
|
value: 55.650999999999996 |
|
- type: mrr_at_1000 |
|
value: 55.679 |
|
- type: mrr_at_3 |
|
value: 52.602000000000004 |
|
- type: mrr_at_5 |
|
value: 53.931 |
|
- type: ndcg_at_1 |
|
value: 44.513999999999996 |
|
- type: ndcg_at_10 |
|
value: 57.67400000000001 |
|
- type: ndcg_at_100 |
|
value: 61.663999999999994 |
|
- type: ndcg_at_1000 |
|
value: 62.743 |
|
- type: ndcg_at_3 |
|
value: 51.964 |
|
- type: ndcg_at_5 |
|
value: 54.773 |
|
- type: precision_at_1 |
|
value: 44.513999999999996 |
|
- type: precision_at_10 |
|
value: 9.423 |
|
- type: precision_at_100 |
|
value: 1.2309999999999999 |
|
- type: precision_at_1000 |
|
value: 0.13699999999999998 |
|
- type: precision_at_3 |
|
value: 23.323 |
|
- type: precision_at_5 |
|
value: 16.163 |
|
- type: recall_at_1 |
|
value: 38.83 |
|
- type: recall_at_10 |
|
value: 72.327 |
|
- type: recall_at_100 |
|
value: 89.519 |
|
- type: recall_at_1000 |
|
value: 97.041 |
|
- type: recall_at_3 |
|
value: 57.206 |
|
- type: recall_at_5 |
|
value: 63.88399999999999 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: BeIR/cqadupstack |
|
name: MTEB CQADupstackGisRetrieval |
|
config: default |
|
split: test |
|
revision: None |
|
metrics: |
|
- type: map_at_1 |
|
value: 25.484 |
|
- type: map_at_10 |
|
value: 34.527 |
|
- type: map_at_100 |
|
value: 35.661 |
|
- type: map_at_1000 |
|
value: 35.739 |
|
- type: map_at_3 |
|
value: 32.199 |
|
- type: map_at_5 |
|
value: 33.632 |
|
- type: mrr_at_1 |
|
value: 27.458 |
|
- type: mrr_at_10 |
|
value: 36.543 |
|
- type: mrr_at_100 |
|
value: 37.482 |
|
- type: mrr_at_1000 |
|
value: 37.543 |
|
- type: mrr_at_3 |
|
value: 34.256 |
|
- type: mrr_at_5 |
|
value: 35.618 |
|
- type: ndcg_at_1 |
|
value: 27.458 |
|
- type: ndcg_at_10 |
|
value: 39.396 |
|
- type: ndcg_at_100 |
|
value: 44.742 |
|
- type: ndcg_at_1000 |
|
value: 46.708 |
|
- type: ndcg_at_3 |
|
value: 34.817 |
|
- type: ndcg_at_5 |
|
value: 37.247 |
|
- type: precision_at_1 |
|
value: 27.458 |
|
- type: precision_at_10 |
|
value: 5.976999999999999 |
|
- type: precision_at_100 |
|
value: 0.907 |
|
- type: precision_at_1000 |
|
value: 0.11100000000000002 |
|
- type: precision_at_3 |
|
value: 14.878 |
|
- type: precision_at_5 |
|
value: 10.35 |
|
- type: recall_at_1 |
|
value: 25.484 |
|
- type: recall_at_10 |
|
value: 52.317 |
|
- type: recall_at_100 |
|
value: 76.701 |
|
- type: recall_at_1000 |
|
value: 91.408 |
|
- type: recall_at_3 |
|
value: 40.043 |
|
- type: recall_at_5 |
|
value: 45.879 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: BeIR/cqadupstack |
|
name: MTEB CQADupstackMathematicaRetrieval |
|
config: default |
|
split: test |
|
revision: None |
|
metrics: |
|
- type: map_at_1 |
|
value: 16.719 |
|
- type: map_at_10 |
|
value: 25.269000000000002 |
|
- type: map_at_100 |
|
value: 26.442 |
|
- type: map_at_1000 |
|
value: 26.557 |
|
- type: map_at_3 |
|
value: 22.56 |
|
- type: map_at_5 |
|
value: 24.082 |
|
- type: mrr_at_1 |
|
value: 20.896 |
|
- type: mrr_at_10 |
|
value: 29.982999999999997 |
|
- type: mrr_at_100 |
|
value: 30.895 |
|
- type: mrr_at_1000 |
|
value: 30.961 |
|
- type: mrr_at_3 |
|
value: 27.239 |
|
- type: mrr_at_5 |
|
value: 28.787000000000003 |
|
- type: ndcg_at_1 |
|
value: 20.896 |
|
- type: ndcg_at_10 |
|
value: 30.814000000000004 |
|
- type: ndcg_at_100 |
|
value: 36.418 |
|
- type: ndcg_at_1000 |
|
value: 39.182 |
|
- type: ndcg_at_3 |
|
value: 25.807999999999996 |
|
- type: ndcg_at_5 |
|
value: 28.143 |
|
- type: precision_at_1 |
|
value: 20.896 |
|
- type: precision_at_10 |
|
value: 5.821 |
|
- type: precision_at_100 |
|
value: 0.991 |
|
- type: precision_at_1000 |
|
value: 0.136 |
|
- type: precision_at_3 |
|
value: 12.562000000000001 |
|
- type: precision_at_5 |
|
value: 9.254 |
|
- type: recall_at_1 |
|
value: 16.719 |
|
- type: recall_at_10 |
|
value: 43.155 |
|
- type: recall_at_100 |
|
value: 67.831 |
|
- type: recall_at_1000 |
|
value: 87.617 |
|
- type: recall_at_3 |
|
value: 29.259 |
|
- type: recall_at_5 |
|
value: 35.260999999999996 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: BeIR/cqadupstack |
|
name: MTEB CQADupstackPhysicsRetrieval |
|
config: default |
|
split: test |
|
revision: None |
|
metrics: |
|
- type: map_at_1 |
|
value: 29.398999999999997 |
|
- type: map_at_10 |
|
value: 39.876 |
|
- type: map_at_100 |
|
value: 41.205999999999996 |
|
- type: map_at_1000 |
|
value: 41.321999999999996 |
|
- type: map_at_3 |
|
value: 36.588 |
|
- type: map_at_5 |
|
value: 38.538 |
|
- type: mrr_at_1 |
|
value: 35.9 |
|
- type: mrr_at_10 |
|
value: 45.528 |
|
- type: mrr_at_100 |
|
value: 46.343 |
|
- type: mrr_at_1000 |
|
value: 46.388 |
|
- type: mrr_at_3 |
|
value: 42.862 |
|
- type: mrr_at_5 |
|
value: 44.440000000000005 |
|
- type: ndcg_at_1 |
|
value: 35.9 |
|
- type: ndcg_at_10 |
|
value: 45.987 |
|
- type: ndcg_at_100 |
|
value: 51.370000000000005 |
|
- type: ndcg_at_1000 |
|
value: 53.400000000000006 |
|
- type: ndcg_at_3 |
|
value: 40.841 |
|
- type: ndcg_at_5 |
|
value: 43.447 |
|
- type: precision_at_1 |
|
value: 35.9 |
|
- type: precision_at_10 |
|
value: 8.393 |
|
- type: precision_at_100 |
|
value: 1.283 |
|
- type: precision_at_1000 |
|
value: 0.166 |
|
- type: precision_at_3 |
|
value: 19.538 |
|
- type: precision_at_5 |
|
value: 13.975000000000001 |
|
- type: recall_at_1 |
|
value: 29.398999999999997 |
|
- type: recall_at_10 |
|
value: 58.361 |
|
- type: recall_at_100 |
|
value: 81.081 |
|
- type: recall_at_1000 |
|
value: 94.004 |
|
- type: recall_at_3 |
|
value: 43.657000000000004 |
|
- type: recall_at_5 |
|
value: 50.519999999999996 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: BeIR/cqadupstack |
|
name: MTEB CQADupstackProgrammersRetrieval |
|
config: default |
|
split: test |
|
revision: None |
|
metrics: |
|
- type: map_at_1 |
|
value: 21.589 |
|
- type: map_at_10 |
|
value: 31.608999999999998 |
|
- type: map_at_100 |
|
value: 33.128 |
|
- type: map_at_1000 |
|
value: 33.247 |
|
- type: map_at_3 |
|
value: 28.671999999999997 |
|
- type: map_at_5 |
|
value: 30.233999999999998 |
|
- type: mrr_at_1 |
|
value: 26.712000000000003 |
|
- type: mrr_at_10 |
|
value: 36.713 |
|
- type: mrr_at_100 |
|
value: 37.713 |
|
- type: mrr_at_1000 |
|
value: 37.771 |
|
- type: mrr_at_3 |
|
value: 34.075 |
|
- type: mrr_at_5 |
|
value: 35.451 |
|
- type: ndcg_at_1 |
|
value: 26.712000000000003 |
|
- type: ndcg_at_10 |
|
value: 37.519999999999996 |
|
- type: ndcg_at_100 |
|
value: 43.946000000000005 |
|
- type: ndcg_at_1000 |
|
value: 46.297 |
|
- type: ndcg_at_3 |
|
value: 32.551 |
|
- type: ndcg_at_5 |
|
value: 34.660999999999994 |
|
- type: precision_at_1 |
|
value: 26.712000000000003 |
|
- type: precision_at_10 |
|
value: 7.066 |
|
- type: precision_at_100 |
|
value: 1.216 |
|
- type: precision_at_1000 |
|
value: 0.157 |
|
- type: precision_at_3 |
|
value: 15.906 |
|
- type: precision_at_5 |
|
value: 11.437999999999999 |
|
- type: recall_at_1 |
|
value: 21.589 |
|
- type: recall_at_10 |
|
value: 50.090999999999994 |
|
- type: recall_at_100 |
|
value: 77.43900000000001 |
|
- type: recall_at_1000 |
|
value: 93.35900000000001 |
|
- type: recall_at_3 |
|
value: 36.028999999999996 |
|
- type: recall_at_5 |
|
value: 41.698 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: BeIR/cqadupstack |
|
name: MTEB CQADupstackRetrieval |
|
config: default |
|
split: test |
|
revision: None |
|
metrics: |
|
- type: map_at_1 |
|
value: 25.121666666666663 |
|
- type: map_at_10 |
|
value: 34.46258333333334 |
|
- type: map_at_100 |
|
value: 35.710499999999996 |
|
- type: map_at_1000 |
|
value: 35.82691666666666 |
|
- type: map_at_3 |
|
value: 31.563249999999996 |
|
- type: map_at_5 |
|
value: 33.189750000000004 |
|
- type: mrr_at_1 |
|
value: 29.66441666666667 |
|
- type: mrr_at_10 |
|
value: 38.5455 |
|
- type: mrr_at_100 |
|
value: 39.39566666666667 |
|
- type: mrr_at_1000 |
|
value: 39.45325 |
|
- type: mrr_at_3 |
|
value: 36.003333333333345 |
|
- type: mrr_at_5 |
|
value: 37.440916666666666 |
|
- type: ndcg_at_1 |
|
value: 29.66441666666667 |
|
- type: ndcg_at_10 |
|
value: 39.978416666666675 |
|
- type: ndcg_at_100 |
|
value: 45.278666666666666 |
|
- type: ndcg_at_1000 |
|
value: 47.52275 |
|
- type: ndcg_at_3 |
|
value: 35.00058333333334 |
|
- type: ndcg_at_5 |
|
value: 37.34908333333333 |
|
- type: precision_at_1 |
|
value: 29.66441666666667 |
|
- type: precision_at_10 |
|
value: 7.094500000000001 |
|
- type: precision_at_100 |
|
value: 1.1523333333333332 |
|
- type: precision_at_1000 |
|
value: 0.15358333333333332 |
|
- type: precision_at_3 |
|
value: 16.184166666666663 |
|
- type: precision_at_5 |
|
value: 11.6005 |
|
- type: recall_at_1 |
|
value: 25.121666666666663 |
|
- type: recall_at_10 |
|
value: 52.23975000000001 |
|
- type: recall_at_100 |
|
value: 75.48408333333333 |
|
- type: recall_at_1000 |
|
value: 90.95316666666668 |
|
- type: recall_at_3 |
|
value: 38.38458333333333 |
|
- type: recall_at_5 |
|
value: 44.39933333333333 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: BeIR/cqadupstack |
|
name: MTEB CQADupstackStatsRetrieval |
|
config: default |
|
split: test |
|
revision: None |
|
metrics: |
|
- type: map_at_1 |
|
value: 23.569000000000003 |
|
- type: map_at_10 |
|
value: 30.389 |
|
- type: map_at_100 |
|
value: 31.396 |
|
- type: map_at_1000 |
|
value: 31.493 |
|
- type: map_at_3 |
|
value: 28.276 |
|
- type: map_at_5 |
|
value: 29.459000000000003 |
|
- type: mrr_at_1 |
|
value: 26.534000000000002 |
|
- type: mrr_at_10 |
|
value: 33.217999999999996 |
|
- type: mrr_at_100 |
|
value: 34.054 |
|
- type: mrr_at_1000 |
|
value: 34.12 |
|
- type: mrr_at_3 |
|
value: 31.058000000000003 |
|
- type: mrr_at_5 |
|
value: 32.330999999999996 |
|
- type: ndcg_at_1 |
|
value: 26.534000000000002 |
|
- type: ndcg_at_10 |
|
value: 34.608 |
|
- type: ndcg_at_100 |
|
value: 39.391999999999996 |
|
- type: ndcg_at_1000 |
|
value: 41.837999999999994 |
|
- type: ndcg_at_3 |
|
value: 30.564999999999998 |
|
- type: ndcg_at_5 |
|
value: 32.509 |
|
- type: precision_at_1 |
|
value: 26.534000000000002 |
|
- type: precision_at_10 |
|
value: 5.414 |
|
- type: precision_at_100 |
|
value: 0.847 |
|
- type: precision_at_1000 |
|
value: 0.11399999999999999 |
|
- type: precision_at_3 |
|
value: 12.986 |
|
- type: precision_at_5 |
|
value: 9.202 |
|
- type: recall_at_1 |
|
value: 23.569000000000003 |
|
- type: recall_at_10 |
|
value: 44.896 |
|
- type: recall_at_100 |
|
value: 66.476 |
|
- type: recall_at_1000 |
|
value: 84.548 |
|
- type: recall_at_3 |
|
value: 33.79 |
|
- type: recall_at_5 |
|
value: 38.512 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: BeIR/cqadupstack |
|
name: MTEB CQADupstackTexRetrieval |
|
config: default |
|
split: test |
|
revision: None |
|
metrics: |
|
- type: map_at_1 |
|
value: 16.36 |
|
- type: map_at_10 |
|
value: 23.57 |
|
- type: map_at_100 |
|
value: 24.698999999999998 |
|
- type: map_at_1000 |
|
value: 24.834999999999997 |
|
- type: map_at_3 |
|
value: 21.093 |
|
- type: map_at_5 |
|
value: 22.418 |
|
- type: mrr_at_1 |
|
value: 19.718 |
|
- type: mrr_at_10 |
|
value: 27.139999999999997 |
|
- type: mrr_at_100 |
|
value: 28.097 |
|
- type: mrr_at_1000 |
|
value: 28.177999999999997 |
|
- type: mrr_at_3 |
|
value: 24.805 |
|
- type: mrr_at_5 |
|
value: 26.121 |
|
- type: ndcg_at_1 |
|
value: 19.718 |
|
- type: ndcg_at_10 |
|
value: 28.238999999999997 |
|
- type: ndcg_at_100 |
|
value: 33.663 |
|
- type: ndcg_at_1000 |
|
value: 36.763 |
|
- type: ndcg_at_3 |
|
value: 23.747 |
|
- type: ndcg_at_5 |
|
value: 25.796000000000003 |
|
- type: precision_at_1 |
|
value: 19.718 |
|
- type: precision_at_10 |
|
value: 5.282 |
|
- type: precision_at_100 |
|
value: 0.9390000000000001 |
|
- type: precision_at_1000 |
|
value: 0.13899999999999998 |
|
- type: precision_at_3 |
|
value: 11.264000000000001 |
|
- type: precision_at_5 |
|
value: 8.341 |
|
- type: recall_at_1 |
|
value: 16.36 |
|
- type: recall_at_10 |
|
value: 38.669 |
|
- type: recall_at_100 |
|
value: 63.184 |
|
- type: recall_at_1000 |
|
value: 85.33800000000001 |
|
- type: recall_at_3 |
|
value: 26.214 |
|
- type: recall_at_5 |
|
value: 31.423000000000002 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: BeIR/cqadupstack |
|
name: MTEB CQADupstackUnixRetrieval |
|
config: default |
|
split: test |
|
revision: None |
|
metrics: |
|
- type: map_at_1 |
|
value: 25.618999999999996 |
|
- type: map_at_10 |
|
value: 34.361999999999995 |
|
- type: map_at_100 |
|
value: 35.534 |
|
- type: map_at_1000 |
|
value: 35.634 |
|
- type: map_at_3 |
|
value: 31.402 |
|
- type: map_at_5 |
|
value: 32.815 |
|
- type: mrr_at_1 |
|
value: 30.037000000000003 |
|
- type: mrr_at_10 |
|
value: 38.284 |
|
- type: mrr_at_100 |
|
value: 39.141999999999996 |
|
- type: mrr_at_1000 |
|
value: 39.2 |
|
- type: mrr_at_3 |
|
value: 35.603 |
|
- type: mrr_at_5 |
|
value: 36.867 |
|
- type: ndcg_at_1 |
|
value: 30.037000000000003 |
|
- type: ndcg_at_10 |
|
value: 39.87 |
|
- type: ndcg_at_100 |
|
value: 45.243 |
|
- type: ndcg_at_1000 |
|
value: 47.507 |
|
- type: ndcg_at_3 |
|
value: 34.371 |
|
- type: ndcg_at_5 |
|
value: 36.521 |
|
- type: precision_at_1 |
|
value: 30.037000000000003 |
|
- type: precision_at_10 |
|
value: 6.819 |
|
- type: precision_at_100 |
|
value: 1.0699999999999998 |
|
- type: precision_at_1000 |
|
value: 0.13699999999999998 |
|
- type: precision_at_3 |
|
value: 15.392 |
|
- type: precision_at_5 |
|
value: 10.821 |
|
- type: recall_at_1 |
|
value: 25.618999999999996 |
|
- type: recall_at_10 |
|
value: 52.869 |
|
- type: recall_at_100 |
|
value: 76.395 |
|
- type: recall_at_1000 |
|
value: 92.19500000000001 |
|
- type: recall_at_3 |
|
value: 37.943 |
|
- type: recall_at_5 |
|
value: 43.342999999999996 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: BeIR/cqadupstack |
|
name: MTEB CQADupstackWebmastersRetrieval |
|
config: default |
|
split: test |
|
revision: None |
|
metrics: |
|
- type: map_at_1 |
|
value: 23.283 |
|
- type: map_at_10 |
|
value: 32.155 |
|
- type: map_at_100 |
|
value: 33.724 |
|
- type: map_at_1000 |
|
value: 33.939 |
|
- type: map_at_3 |
|
value: 29.018 |
|
- type: map_at_5 |
|
value: 30.864000000000004 |
|
- type: mrr_at_1 |
|
value: 28.063 |
|
- type: mrr_at_10 |
|
value: 36.632 |
|
- type: mrr_at_100 |
|
value: 37.606 |
|
- type: mrr_at_1000 |
|
value: 37.671 |
|
- type: mrr_at_3 |
|
value: 33.992 |
|
- type: mrr_at_5 |
|
value: 35.613 |
|
- type: ndcg_at_1 |
|
value: 28.063 |
|
- type: ndcg_at_10 |
|
value: 38.024 |
|
- type: ndcg_at_100 |
|
value: 44.292 |
|
- type: ndcg_at_1000 |
|
value: 46.818 |
|
- type: ndcg_at_3 |
|
value: 32.965 |
|
- type: ndcg_at_5 |
|
value: 35.562 |
|
- type: precision_at_1 |
|
value: 28.063 |
|
- type: precision_at_10 |
|
value: 7.352 |
|
- type: precision_at_100 |
|
value: 1.514 |
|
- type: precision_at_1000 |
|
value: 0.23800000000000002 |
|
- type: precision_at_3 |
|
value: 15.481 |
|
- type: precision_at_5 |
|
value: 11.542 |
|
- type: recall_at_1 |
|
value: 23.283 |
|
- type: recall_at_10 |
|
value: 49.756 |
|
- type: recall_at_100 |
|
value: 78.05 |
|
- type: recall_at_1000 |
|
value: 93.854 |
|
- type: recall_at_3 |
|
value: 35.408 |
|
- type: recall_at_5 |
|
value: 42.187000000000005 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: BeIR/cqadupstack |
|
name: MTEB CQADupstackWordpressRetrieval |
|
config: default |
|
split: test |
|
revision: None |
|
metrics: |
|
- type: map_at_1 |
|
value: 19.201999999999998 |
|
- type: map_at_10 |
|
value: 26.826 |
|
- type: map_at_100 |
|
value: 27.961000000000002 |
|
- type: map_at_1000 |
|
value: 28.066999999999997 |
|
- type: map_at_3 |
|
value: 24.237000000000002 |
|
- type: map_at_5 |
|
value: 25.811 |
|
- type: mrr_at_1 |
|
value: 20.887 |
|
- type: mrr_at_10 |
|
value: 28.660000000000004 |
|
- type: mrr_at_100 |
|
value: 29.660999999999998 |
|
- type: mrr_at_1000 |
|
value: 29.731 |
|
- type: mrr_at_3 |
|
value: 26.155 |
|
- type: mrr_at_5 |
|
value: 27.68 |
|
- type: ndcg_at_1 |
|
value: 20.887 |
|
- type: ndcg_at_10 |
|
value: 31.523 |
|
- type: ndcg_at_100 |
|
value: 37.055 |
|
- type: ndcg_at_1000 |
|
value: 39.579 |
|
- type: ndcg_at_3 |
|
value: 26.529000000000003 |
|
- type: ndcg_at_5 |
|
value: 29.137 |
|
- type: precision_at_1 |
|
value: 20.887 |
|
- type: precision_at_10 |
|
value: 5.065 |
|
- type: precision_at_100 |
|
value: 0.856 |
|
- type: precision_at_1000 |
|
value: 0.11900000000000001 |
|
- type: precision_at_3 |
|
value: 11.399 |
|
- type: precision_at_5 |
|
value: 8.392 |
|
- type: recall_at_1 |
|
value: 19.201999999999998 |
|
- type: recall_at_10 |
|
value: 44.285000000000004 |
|
- type: recall_at_100 |
|
value: 69.768 |
|
- type: recall_at_1000 |
|
value: 88.302 |
|
- type: recall_at_3 |
|
value: 30.804 |
|
- type: recall_at_5 |
|
value: 37.039 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: climate-fever |
|
name: MTEB ClimateFEVER |
|
config: default |
|
split: test |
|
revision: None |
|
metrics: |
|
- type: map_at_1 |
|
value: 11.244 |
|
- type: map_at_10 |
|
value: 18.956 |
|
- type: map_at_100 |
|
value: 20.674 |
|
- type: map_at_1000 |
|
value: 20.863 |
|
- type: map_at_3 |
|
value: 15.923000000000002 |
|
- type: map_at_5 |
|
value: 17.518 |
|
- type: mrr_at_1 |
|
value: 25.080999999999996 |
|
- type: mrr_at_10 |
|
value: 35.94 |
|
- type: mrr_at_100 |
|
value: 36.969 |
|
- type: mrr_at_1000 |
|
value: 37.013 |
|
- type: mrr_at_3 |
|
value: 32.617000000000004 |
|
- type: mrr_at_5 |
|
value: 34.682 |
|
- type: ndcg_at_1 |
|
value: 25.080999999999996 |
|
- type: ndcg_at_10 |
|
value: 26.539 |
|
- type: ndcg_at_100 |
|
value: 33.601 |
|
- type: ndcg_at_1000 |
|
value: 37.203 |
|
- type: ndcg_at_3 |
|
value: 21.695999999999998 |
|
- type: ndcg_at_5 |
|
value: 23.567 |
|
- type: precision_at_1 |
|
value: 25.080999999999996 |
|
- type: precision_at_10 |
|
value: 8.143 |
|
- type: precision_at_100 |
|
value: 1.5650000000000002 |
|
- type: precision_at_1000 |
|
value: 0.22300000000000003 |
|
- type: precision_at_3 |
|
value: 15.983 |
|
- type: precision_at_5 |
|
value: 12.417 |
|
- type: recall_at_1 |
|
value: 11.244 |
|
- type: recall_at_10 |
|
value: 31.457 |
|
- type: recall_at_100 |
|
value: 55.92 |
|
- type: recall_at_1000 |
|
value: 76.372 |
|
- type: recall_at_3 |
|
value: 19.784 |
|
- type: recall_at_5 |
|
value: 24.857000000000003 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: dbpedia-entity |
|
name: MTEB DBPedia |
|
config: default |
|
split: test |
|
revision: None |
|
metrics: |
|
- type: map_at_1 |
|
value: 8.595 |
|
- type: map_at_10 |
|
value: 18.75 |
|
- type: map_at_100 |
|
value: 26.354 |
|
- type: map_at_1000 |
|
value: 27.912 |
|
- type: map_at_3 |
|
value: 13.794 |
|
- type: map_at_5 |
|
value: 16.021 |
|
- type: mrr_at_1 |
|
value: 65.75 |
|
- type: mrr_at_10 |
|
value: 73.837 |
|
- type: mrr_at_100 |
|
value: 74.22800000000001 |
|
- type: mrr_at_1000 |
|
value: 74.234 |
|
- type: mrr_at_3 |
|
value: 72.5 |
|
- type: mrr_at_5 |
|
value: 73.387 |
|
- type: ndcg_at_1 |
|
value: 52.625 |
|
- type: ndcg_at_10 |
|
value: 39.101 |
|
- type: ndcg_at_100 |
|
value: 43.836000000000006 |
|
- type: ndcg_at_1000 |
|
value: 51.086 |
|
- type: ndcg_at_3 |
|
value: 44.229 |
|
- type: ndcg_at_5 |
|
value: 41.555 |
|
- type: precision_at_1 |
|
value: 65.75 |
|
- type: precision_at_10 |
|
value: 30.45 |
|
- type: precision_at_100 |
|
value: 9.81 |
|
- type: precision_at_1000 |
|
value: 2.045 |
|
- type: precision_at_3 |
|
value: 48.667 |
|
- type: precision_at_5 |
|
value: 40.8 |
|
- type: recall_at_1 |
|
value: 8.595 |
|
- type: recall_at_10 |
|
value: 24.201 |
|
- type: recall_at_100 |
|
value: 50.096 |
|
- type: recall_at_1000 |
|
value: 72.677 |
|
- type: recall_at_3 |
|
value: 15.212 |
|
- type: recall_at_5 |
|
value: 18.745 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/emotion |
|
name: MTEB EmotionClassification |
|
config: default |
|
split: test |
|
revision: 4f58c6b202a23cf9a4da393831edf4f9183cad37 |
|
metrics: |
|
- type: accuracy |
|
value: 46.565 |
|
- type: f1 |
|
value: 41.49914329345582 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: fever |
|
name: MTEB FEVER |
|
config: default |
|
split: test |
|
revision: None |
|
metrics: |
|
- type: map_at_1 |
|
value: 66.60000000000001 |
|
- type: map_at_10 |
|
value: 76.838 |
|
- type: map_at_100 |
|
value: 77.076 |
|
- type: map_at_1000 |
|
value: 77.09 |
|
- type: map_at_3 |
|
value: 75.545 |
|
- type: map_at_5 |
|
value: 76.39 |
|
- type: mrr_at_1 |
|
value: 71.707 |
|
- type: mrr_at_10 |
|
value: 81.514 |
|
- type: mrr_at_100 |
|
value: 81.64099999999999 |
|
- type: mrr_at_1000 |
|
value: 81.645 |
|
- type: mrr_at_3 |
|
value: 80.428 |
|
- type: mrr_at_5 |
|
value: 81.159 |
|
- type: ndcg_at_1 |
|
value: 71.707 |
|
- type: ndcg_at_10 |
|
value: 81.545 |
|
- type: ndcg_at_100 |
|
value: 82.477 |
|
- type: ndcg_at_1000 |
|
value: 82.73899999999999 |
|
- type: ndcg_at_3 |
|
value: 79.292 |
|
- type: ndcg_at_5 |
|
value: 80.599 |
|
- type: precision_at_1 |
|
value: 71.707 |
|
- type: precision_at_10 |
|
value: 10.035 |
|
- type: precision_at_100 |
|
value: 1.068 |
|
- type: precision_at_1000 |
|
value: 0.11100000000000002 |
|
- type: precision_at_3 |
|
value: 30.918 |
|
- type: precision_at_5 |
|
value: 19.328 |
|
- type: recall_at_1 |
|
value: 66.60000000000001 |
|
- type: recall_at_10 |
|
value: 91.353 |
|
- type: recall_at_100 |
|
value: 95.21 |
|
- type: recall_at_1000 |
|
value: 96.89999999999999 |
|
- type: recall_at_3 |
|
value: 85.188 |
|
- type: recall_at_5 |
|
value: 88.52 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: fiqa |
|
name: MTEB FiQA2018 |
|
config: default |
|
split: test |
|
revision: None |
|
metrics: |
|
- type: map_at_1 |
|
value: 19.338 |
|
- type: map_at_10 |
|
value: 31.752000000000002 |
|
- type: map_at_100 |
|
value: 33.516 |
|
- type: map_at_1000 |
|
value: 33.694 |
|
- type: map_at_3 |
|
value: 27.716 |
|
- type: map_at_5 |
|
value: 29.67 |
|
- type: mrr_at_1 |
|
value: 38.117000000000004 |
|
- type: mrr_at_10 |
|
value: 47.323 |
|
- type: mrr_at_100 |
|
value: 48.13 |
|
- type: mrr_at_1000 |
|
value: 48.161 |
|
- type: mrr_at_3 |
|
value: 45.062000000000005 |
|
- type: mrr_at_5 |
|
value: 46.358 |
|
- type: ndcg_at_1 |
|
value: 38.117000000000004 |
|
- type: ndcg_at_10 |
|
value: 39.353 |
|
- type: ndcg_at_100 |
|
value: 46.044000000000004 |
|
- type: ndcg_at_1000 |
|
value: 49.083 |
|
- type: ndcg_at_3 |
|
value: 35.891 |
|
- type: ndcg_at_5 |
|
value: 36.661 |
|
- type: precision_at_1 |
|
value: 38.117000000000004 |
|
- type: precision_at_10 |
|
value: 11.187999999999999 |
|
- type: precision_at_100 |
|
value: 1.802 |
|
- type: precision_at_1000 |
|
value: 0.234 |
|
- type: precision_at_3 |
|
value: 24.126 |
|
- type: precision_at_5 |
|
value: 17.562 |
|
- type: recall_at_1 |
|
value: 19.338 |
|
- type: recall_at_10 |
|
value: 45.735 |
|
- type: recall_at_100 |
|
value: 71.281 |
|
- type: recall_at_1000 |
|
value: 89.537 |
|
- type: recall_at_3 |
|
value: 32.525 |
|
- type: recall_at_5 |
|
value: 37.671 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: hotpotqa |
|
name: MTEB HotpotQA |
|
config: default |
|
split: test |
|
revision: None |
|
metrics: |
|
- type: map_at_1 |
|
value: 36.995 |
|
- type: map_at_10 |
|
value: 55.032000000000004 |
|
- type: map_at_100 |
|
value: 55.86 |
|
- type: map_at_1000 |
|
value: 55.932 |
|
- type: map_at_3 |
|
value: 52.125 |
|
- type: map_at_5 |
|
value: 53.884 |
|
- type: mrr_at_1 |
|
value: 73.991 |
|
- type: mrr_at_10 |
|
value: 80.096 |
|
- type: mrr_at_100 |
|
value: 80.32000000000001 |
|
- type: mrr_at_1000 |
|
value: 80.331 |
|
- type: mrr_at_3 |
|
value: 79.037 |
|
- type: mrr_at_5 |
|
value: 79.719 |
|
- type: ndcg_at_1 |
|
value: 73.991 |
|
- type: ndcg_at_10 |
|
value: 63.786 |
|
- type: ndcg_at_100 |
|
value: 66.78 |
|
- type: ndcg_at_1000 |
|
value: 68.255 |
|
- type: ndcg_at_3 |
|
value: 59.501000000000005 |
|
- type: ndcg_at_5 |
|
value: 61.82299999999999 |
|
- type: precision_at_1 |
|
value: 73.991 |
|
- type: precision_at_10 |
|
value: 13.157 |
|
- type: precision_at_100 |
|
value: 1.552 |
|
- type: precision_at_1000 |
|
value: 0.17500000000000002 |
|
- type: precision_at_3 |
|
value: 37.519999999999996 |
|
- type: precision_at_5 |
|
value: 24.351 |
|
- type: recall_at_1 |
|
value: 36.995 |
|
- type: recall_at_10 |
|
value: 65.78699999999999 |
|
- type: recall_at_100 |
|
value: 77.583 |
|
- type: recall_at_1000 |
|
value: 87.421 |
|
- type: recall_at_3 |
|
value: 56.279999999999994 |
|
- type: recall_at_5 |
|
value: 60.878 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/imdb |
|
name: MTEB ImdbClassification |
|
config: default |
|
split: test |
|
revision: 3d86128a09e091d6018b6d26cad27f2739fc2db7 |
|
metrics: |
|
- type: accuracy |
|
value: 86.80239999999999 |
|
- type: ap |
|
value: 81.97305141128378 |
|
- type: f1 |
|
value: 86.76976305549273 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: msmarco |
|
name: MTEB MSMARCO |
|
config: default |
|
split: dev |
|
revision: None |
|
metrics: |
|
- type: map_at_1 |
|
value: 21.166 |
|
- type: map_at_10 |
|
value: 33.396 |
|
- type: map_at_100 |
|
value: 34.588 |
|
- type: map_at_1000 |
|
value: 34.637 |
|
- type: map_at_3 |
|
value: 29.509999999999998 |
|
- type: map_at_5 |
|
value: 31.719 |
|
- type: mrr_at_1 |
|
value: 21.762 |
|
- type: mrr_at_10 |
|
value: 33.969 |
|
- type: mrr_at_100 |
|
value: 35.099000000000004 |
|
- type: mrr_at_1000 |
|
value: 35.141 |
|
- type: mrr_at_3 |
|
value: 30.148000000000003 |
|
- type: mrr_at_5 |
|
value: 32.324000000000005 |
|
- type: ndcg_at_1 |
|
value: 21.776999999999997 |
|
- type: ndcg_at_10 |
|
value: 40.306999999999995 |
|
- type: ndcg_at_100 |
|
value: 46.068 |
|
- type: ndcg_at_1000 |
|
value: 47.3 |
|
- type: ndcg_at_3 |
|
value: 32.416 |
|
- type: ndcg_at_5 |
|
value: 36.345 |
|
- type: precision_at_1 |
|
value: 21.776999999999997 |
|
- type: precision_at_10 |
|
value: 6.433 |
|
- type: precision_at_100 |
|
value: 0.932 |
|
- type: precision_at_1000 |
|
value: 0.104 |
|
- type: precision_at_3 |
|
value: 13.897 |
|
- type: precision_at_5 |
|
value: 10.324 |
|
- type: recall_at_1 |
|
value: 21.166 |
|
- type: recall_at_10 |
|
value: 61.587 |
|
- type: recall_at_100 |
|
value: 88.251 |
|
- type: recall_at_1000 |
|
value: 97.727 |
|
- type: recall_at_3 |
|
value: 40.196 |
|
- type: recall_at_5 |
|
value: 49.611 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/mtop_domain |
|
name: MTEB MTOPDomainClassification (en) |
|
config: en |
|
split: test |
|
revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf |
|
metrics: |
|
- type: accuracy |
|
value: 93.04605563155496 |
|
- type: f1 |
|
value: 92.78007303978372 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/mtop_intent |
|
name: MTEB MTOPIntentClassification (en) |
|
config: en |
|
split: test |
|
revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba |
|
metrics: |
|
- type: accuracy |
|
value: 69.65116279069767 |
|
- type: f1 |
|
value: 52.75775172527262 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_intent |
|
name: MTEB MassiveIntentClassification (en) |
|
config: en |
|
split: test |
|
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 |
|
metrics: |
|
- type: accuracy |
|
value: 70.34633490248822 |
|
- type: f1 |
|
value: 68.15345065392562 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_scenario |
|
name: MTEB MassiveScenarioClassification (en) |
|
config: en |
|
split: test |
|
revision: 7d571f92784cd94a019292a1f45445077d0ef634 |
|
metrics: |
|
- type: accuracy |
|
value: 75.63887020847343 |
|
- type: f1 |
|
value: 76.08074680233685 |
|
- task: |
|
type: Clustering |
|
dataset: |
|
type: mteb/medrxiv-clustering-p2p |
|
name: MTEB MedrxivClusteringP2P |
|
config: default |
|
split: test |
|
revision: e7a26af6f3ae46b30dde8737f02c07b1505bcc73 |
|
metrics: |
|
- type: v_measure |
|
value: 33.77933406071333 |
|
- task: |
|
type: Clustering |
|
dataset: |
|
type: mteb/medrxiv-clustering-s2s |
|
name: MTEB MedrxivClusteringS2S |
|
config: default |
|
split: test |
|
revision: 35191c8c0dca72d8ff3efcd72aa802307d469663 |
|
metrics: |
|
- type: v_measure |
|
value: 32.06504927238196 |
|
- task: |
|
type: Reranking |
|
dataset: |
|
type: mteb/mind_small |
|
name: MTEB MindSmallReranking |
|
config: default |
|
split: test |
|
revision: 3bdac13927fdc888b903db93b2ffdbd90b295a69 |
|
metrics: |
|
- type: map |
|
value: 32.20682480490871 |
|
- type: mrr |
|
value: 33.41462721527003 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: nfcorpus |
|
name: MTEB NFCorpus |
|
config: default |
|
split: test |
|
revision: None |
|
metrics: |
|
- type: map_at_1 |
|
value: 5.548 |
|
- type: map_at_10 |
|
value: 13.086999999999998 |
|
- type: map_at_100 |
|
value: 16.698 |
|
- type: map_at_1000 |
|
value: 18.151999999999997 |
|
- type: map_at_3 |
|
value: 9.576 |
|
- type: map_at_5 |
|
value: 11.175 |
|
- type: mrr_at_1 |
|
value: 44.272 |
|
- type: mrr_at_10 |
|
value: 53.635999999999996 |
|
- type: mrr_at_100 |
|
value: 54.228 |
|
- type: mrr_at_1000 |
|
value: 54.26499999999999 |
|
- type: mrr_at_3 |
|
value: 51.754 |
|
- type: mrr_at_5 |
|
value: 53.086 |
|
- type: ndcg_at_1 |
|
value: 42.724000000000004 |
|
- type: ndcg_at_10 |
|
value: 34.769 |
|
- type: ndcg_at_100 |
|
value: 32.283 |
|
- type: ndcg_at_1000 |
|
value: 40.843 |
|
- type: ndcg_at_3 |
|
value: 39.852 |
|
- type: ndcg_at_5 |
|
value: 37.858999999999995 |
|
- type: precision_at_1 |
|
value: 44.272 |
|
- type: precision_at_10 |
|
value: 26.068 |
|
- type: precision_at_100 |
|
value: 8.328000000000001 |
|
- type: precision_at_1000 |
|
value: 2.1 |
|
- type: precision_at_3 |
|
value: 37.874 |
|
- type: precision_at_5 |
|
value: 33.065 |
|
- type: recall_at_1 |
|
value: 5.548 |
|
- type: recall_at_10 |
|
value: 16.936999999999998 |
|
- type: recall_at_100 |
|
value: 33.72 |
|
- type: recall_at_1000 |
|
value: 64.348 |
|
- type: recall_at_3 |
|
value: 10.764999999999999 |
|
- type: recall_at_5 |
|
value: 13.361 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: nq |
|
name: MTEB NQ |
|
config: default |
|
split: test |
|
revision: None |
|
metrics: |
|
- type: map_at_1 |
|
value: 28.008 |
|
- type: map_at_10 |
|
value: 42.675000000000004 |
|
- type: map_at_100 |
|
value: 43.85 |
|
- type: map_at_1000 |
|
value: 43.884 |
|
- type: map_at_3 |
|
value: 38.286 |
|
- type: map_at_5 |
|
value: 40.78 |
|
- type: mrr_at_1 |
|
value: 31.518 |
|
- type: mrr_at_10 |
|
value: 45.015 |
|
- type: mrr_at_100 |
|
value: 45.924 |
|
- type: mrr_at_1000 |
|
value: 45.946999999999996 |
|
- type: mrr_at_3 |
|
value: 41.348 |
|
- type: mrr_at_5 |
|
value: 43.428 |
|
- type: ndcg_at_1 |
|
value: 31.489 |
|
- type: ndcg_at_10 |
|
value: 50.285999999999994 |
|
- type: ndcg_at_100 |
|
value: 55.291999999999994 |
|
- type: ndcg_at_1000 |
|
value: 56.05 |
|
- type: ndcg_at_3 |
|
value: 41.976 |
|
- type: ndcg_at_5 |
|
value: 46.103 |
|
- type: precision_at_1 |
|
value: 31.489 |
|
- type: precision_at_10 |
|
value: 8.456 |
|
- type: precision_at_100 |
|
value: 1.125 |
|
- type: precision_at_1000 |
|
value: 0.12 |
|
- type: precision_at_3 |
|
value: 19.09 |
|
- type: precision_at_5 |
|
value: 13.841000000000001 |
|
- type: recall_at_1 |
|
value: 28.008 |
|
- type: recall_at_10 |
|
value: 71.21499999999999 |
|
- type: recall_at_100 |
|
value: 92.99 |
|
- type: recall_at_1000 |
|
value: 98.578 |
|
- type: recall_at_3 |
|
value: 49.604 |
|
- type: recall_at_5 |
|
value: 59.094 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: quora |
|
name: MTEB QuoraRetrieval |
|
config: default |
|
split: test |
|
revision: None |
|
metrics: |
|
- type: map_at_1 |
|
value: 70.351 |
|
- type: map_at_10 |
|
value: 84.163 |
|
- type: map_at_100 |
|
value: 84.785 |
|
- type: map_at_1000 |
|
value: 84.801 |
|
- type: map_at_3 |
|
value: 81.16 |
|
- type: map_at_5 |
|
value: 83.031 |
|
- type: mrr_at_1 |
|
value: 80.96 |
|
- type: mrr_at_10 |
|
value: 87.241 |
|
- type: mrr_at_100 |
|
value: 87.346 |
|
- type: mrr_at_1000 |
|
value: 87.347 |
|
- type: mrr_at_3 |
|
value: 86.25699999999999 |
|
- type: mrr_at_5 |
|
value: 86.907 |
|
- type: ndcg_at_1 |
|
value: 80.97 |
|
- type: ndcg_at_10 |
|
value: 88.017 |
|
- type: ndcg_at_100 |
|
value: 89.241 |
|
- type: ndcg_at_1000 |
|
value: 89.34299999999999 |
|
- type: ndcg_at_3 |
|
value: 85.053 |
|
- type: ndcg_at_5 |
|
value: 86.663 |
|
- type: precision_at_1 |
|
value: 80.97 |
|
- type: precision_at_10 |
|
value: 13.358 |
|
- type: precision_at_100 |
|
value: 1.525 |
|
- type: precision_at_1000 |
|
value: 0.157 |
|
- type: precision_at_3 |
|
value: 37.143 |
|
- type: precision_at_5 |
|
value: 24.451999999999998 |
|
- type: recall_at_1 |
|
value: 70.351 |
|
- type: recall_at_10 |
|
value: 95.39800000000001 |
|
- type: recall_at_100 |
|
value: 99.55199999999999 |
|
- type: recall_at_1000 |
|
value: 99.978 |
|
- type: recall_at_3 |
|
value: 86.913 |
|
- type: recall_at_5 |
|
value: 91.448 |
|
- task: |
|
type: Clustering |
|
dataset: |
|
type: mteb/reddit-clustering |
|
name: MTEB RedditClustering |
|
config: default |
|
split: test |
|
revision: 24640382cdbf8abc73003fb0fa6d111a705499eb |
|
metrics: |
|
- type: v_measure |
|
value: 55.62406719814139 |
|
- task: |
|
type: Clustering |
|
dataset: |
|
type: mteb/reddit-clustering-p2p |
|
name: MTEB RedditClusteringP2P |
|
config: default |
|
split: test |
|
revision: 282350215ef01743dc01b456c7f5241fa8937f16 |
|
metrics: |
|
- type: v_measure |
|
value: 61.386700035141736 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: scidocs |
|
name: MTEB SCIDOCS |
|
config: default |
|
split: test |
|
revision: None |
|
metrics: |
|
- type: map_at_1 |
|
value: 4.618 |
|
- type: map_at_10 |
|
value: 12.920000000000002 |
|
- type: map_at_100 |
|
value: 15.304 |
|
- type: map_at_1000 |
|
value: 15.656999999999998 |
|
- type: map_at_3 |
|
value: 9.187 |
|
- type: map_at_5 |
|
value: 10.937 |
|
- type: mrr_at_1 |
|
value: 22.8 |
|
- type: mrr_at_10 |
|
value: 35.13 |
|
- type: mrr_at_100 |
|
value: 36.239 |
|
- type: mrr_at_1000 |
|
value: 36.291000000000004 |
|
- type: mrr_at_3 |
|
value: 31.917 |
|
- type: mrr_at_5 |
|
value: 33.787 |
|
- type: ndcg_at_1 |
|
value: 22.8 |
|
- type: ndcg_at_10 |
|
value: 21.382 |
|
- type: ndcg_at_100 |
|
value: 30.257 |
|
- type: ndcg_at_1000 |
|
value: 36.001 |
|
- type: ndcg_at_3 |
|
value: 20.43 |
|
- type: ndcg_at_5 |
|
value: 17.622 |
|
- type: precision_at_1 |
|
value: 22.8 |
|
- type: precision_at_10 |
|
value: 11.26 |
|
- type: precision_at_100 |
|
value: 2.405 |
|
- type: precision_at_1000 |
|
value: 0.377 |
|
- type: precision_at_3 |
|
value: 19.633 |
|
- type: precision_at_5 |
|
value: 15.68 |
|
- type: recall_at_1 |
|
value: 4.618 |
|
- type: recall_at_10 |
|
value: 22.811999999999998 |
|
- type: recall_at_100 |
|
value: 48.787000000000006 |
|
- type: recall_at_1000 |
|
value: 76.63799999999999 |
|
- type: recall_at_3 |
|
value: 11.952 |
|
- type: recall_at_5 |
|
value: 15.892000000000001 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: mteb/sickr-sts |
|
name: MTEB SICK-R |
|
config: default |
|
split: test |
|
revision: a6ea5a8cab320b040a23452cc28066d9beae2cee |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 84.01529458252244 |
|
- type: cos_sim_spearman |
|
value: 77.92985224770254 |
|
- type: euclidean_pearson |
|
value: 81.04251429422487 |
|
- type: euclidean_spearman |
|
value: 77.92838490549133 |
|
- type: manhattan_pearson |
|
value: 80.95892251458979 |
|
- type: manhattan_spearman |
|
value: 77.81028089705941 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: mteb/sts12-sts |
|
name: MTEB STS12 |
|
config: default |
|
split: test |
|
revision: a0d554a64d88156834ff5ae9920b964011b16384 |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 83.97885282534388 |
|
- type: cos_sim_spearman |
|
value: 75.1221970851712 |
|
- type: euclidean_pearson |
|
value: 80.34455956720097 |
|
- type: euclidean_spearman |
|
value: 74.5894274239938 |
|
- type: manhattan_pearson |
|
value: 80.38999766325465 |
|
- type: manhattan_spearman |
|
value: 74.68524557166975 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: mteb/sts13-sts |
|
name: MTEB STS13 |
|
config: default |
|
split: test |
|
revision: 7e90230a92c190f1bf69ae9002b8cea547a64cca |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 82.95746064915672 |
|
- type: cos_sim_spearman |
|
value: 85.08683458043946 |
|
- type: euclidean_pearson |
|
value: 84.56699492836385 |
|
- type: euclidean_spearman |
|
value: 85.66089116133713 |
|
- type: manhattan_pearson |
|
value: 84.47553323458541 |
|
- type: manhattan_spearman |
|
value: 85.56142206781472 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: mteb/sts14-sts |
|
name: MTEB STS14 |
|
config: default |
|
split: test |
|
revision: 6031580fec1f6af667f0bd2da0a551cf4f0b2375 |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 82.71377893595067 |
|
- type: cos_sim_spearman |
|
value: 81.03453291428589 |
|
- type: euclidean_pearson |
|
value: 82.57136298308613 |
|
- type: euclidean_spearman |
|
value: 81.15839961890875 |
|
- type: manhattan_pearson |
|
value: 82.55157879373837 |
|
- type: manhattan_spearman |
|
value: 81.1540163767054 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: mteb/sts15-sts |
|
name: MTEB STS15 |
|
config: default |
|
split: test |
|
revision: ae752c7c21bf194d8b67fd573edf7ae58183cbe3 |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 86.64197832372373 |
|
- type: cos_sim_spearman |
|
value: 88.31966852492485 |
|
- type: euclidean_pearson |
|
value: 87.98692129976983 |
|
- type: euclidean_spearman |
|
value: 88.6247340837856 |
|
- type: manhattan_pearson |
|
value: 87.90437827826412 |
|
- type: manhattan_spearman |
|
value: 88.56278787131457 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: mteb/sts16-sts |
|
name: MTEB STS16 |
|
config: default |
|
split: test |
|
revision: 4d8694f8f0e0100860b497b999b3dbed754a0513 |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 81.84159950146693 |
|
- type: cos_sim_spearman |
|
value: 83.90678384140168 |
|
- type: euclidean_pearson |
|
value: 83.19005018860221 |
|
- type: euclidean_spearman |
|
value: 84.16260415876295 |
|
- type: manhattan_pearson |
|
value: 83.05030612994494 |
|
- type: manhattan_spearman |
|
value: 83.99605629718336 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: mteb/sts17-crosslingual-sts |
|
name: MTEB STS17 (en-en) |
|
config: en-en |
|
split: test |
|
revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 87.49935350176666 |
|
- type: cos_sim_spearman |
|
value: 87.59086606735383 |
|
- type: euclidean_pearson |
|
value: 88.06537181129983 |
|
- type: euclidean_spearman |
|
value: 87.6687448086014 |
|
- type: manhattan_pearson |
|
value: 87.96599131972935 |
|
- type: manhattan_spearman |
|
value: 87.63295748969642 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: mteb/sts22-crosslingual-sts |
|
name: MTEB STS22 (en) |
|
config: en |
|
split: test |
|
revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80 |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 67.68232799482763 |
|
- type: cos_sim_spearman |
|
value: 67.99930378085793 |
|
- type: euclidean_pearson |
|
value: 68.50275360001696 |
|
- type: euclidean_spearman |
|
value: 67.81588179309259 |
|
- type: manhattan_pearson |
|
value: 68.5892154749763 |
|
- type: manhattan_spearman |
|
value: 67.84357259640682 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: mteb/stsbenchmark-sts |
|
name: MTEB STSBenchmark |
|
config: default |
|
split: test |
|
revision: b0fddb56ed78048fa8b90373c8a3cfc37b684831 |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 84.37049618406554 |
|
- type: cos_sim_spearman |
|
value: 85.57014313159492 |
|
- type: euclidean_pearson |
|
value: 85.57469513908282 |
|
- type: euclidean_spearman |
|
value: 85.661948135258 |
|
- type: manhattan_pearson |
|
value: 85.36866831229028 |
|
- type: manhattan_spearman |
|
value: 85.5043455368843 |
|
- task: |
|
type: Reranking |
|
dataset: |
|
type: mteb/scidocs-reranking |
|
name: MTEB SciDocsRR |
|
config: default |
|
split: test |
|
revision: d3c5e1fc0b855ab6097bf1cda04dd73947d7caab |
|
metrics: |
|
- type: map |
|
value: 84.83259065376154 |
|
- type: mrr |
|
value: 95.58455433455433 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: scifact |
|
name: MTEB SciFact |
|
config: default |
|
split: test |
|
revision: None |
|
metrics: |
|
- type: map_at_1 |
|
value: 58.817 |
|
- type: map_at_10 |
|
value: 68.459 |
|
- type: map_at_100 |
|
value: 68.951 |
|
- type: map_at_1000 |
|
value: 68.979 |
|
- type: map_at_3 |
|
value: 65.791 |
|
- type: map_at_5 |
|
value: 67.583 |
|
- type: mrr_at_1 |
|
value: 61.667 |
|
- type: mrr_at_10 |
|
value: 69.368 |
|
- type: mrr_at_100 |
|
value: 69.721 |
|
- type: mrr_at_1000 |
|
value: 69.744 |
|
- type: mrr_at_3 |
|
value: 67.278 |
|
- type: mrr_at_5 |
|
value: 68.611 |
|
- type: ndcg_at_1 |
|
value: 61.667 |
|
- type: ndcg_at_10 |
|
value: 72.70100000000001 |
|
- type: ndcg_at_100 |
|
value: 74.928 |
|
- type: ndcg_at_1000 |
|
value: 75.553 |
|
- type: ndcg_at_3 |
|
value: 68.203 |
|
- type: ndcg_at_5 |
|
value: 70.804 |
|
- type: precision_at_1 |
|
value: 61.667 |
|
- type: precision_at_10 |
|
value: 9.533 |
|
- type: precision_at_100 |
|
value: 1.077 |
|
- type: precision_at_1000 |
|
value: 0.11299999999999999 |
|
- type: precision_at_3 |
|
value: 26.444000000000003 |
|
- type: precision_at_5 |
|
value: 17.599999999999998 |
|
- type: recall_at_1 |
|
value: 58.817 |
|
- type: recall_at_10 |
|
value: 84.789 |
|
- type: recall_at_100 |
|
value: 95.0 |
|
- type: recall_at_1000 |
|
value: 99.667 |
|
- type: recall_at_3 |
|
value: 72.8 |
|
- type: recall_at_5 |
|
value: 79.294 |
|
- task: |
|
type: PairClassification |
|
dataset: |
|
type: mteb/sprintduplicatequestions-pairclassification |
|
name: MTEB SprintDuplicateQuestions |
|
config: default |
|
split: test |
|
revision: d66bd1f72af766a5cc4b0ca5e00c162f89e8cc46 |
|
metrics: |
|
- type: cos_sim_accuracy |
|
value: 99.8108910891089 |
|
- type: cos_sim_ap |
|
value: 95.5743678558349 |
|
- type: cos_sim_f1 |
|
value: 90.43133366385722 |
|
- type: cos_sim_precision |
|
value: 89.67551622418878 |
|
- type: cos_sim_recall |
|
value: 91.2 |
|
- type: dot_accuracy |
|
value: 99.75841584158415 |
|
- type: dot_ap |
|
value: 94.00786363627253 |
|
- type: dot_f1 |
|
value: 87.51910341314316 |
|
- type: dot_precision |
|
value: 89.20041536863967 |
|
- type: dot_recall |
|
value: 85.9 |
|
- type: euclidean_accuracy |
|
value: 99.81485148514851 |
|
- type: euclidean_ap |
|
value: 95.4752113136905 |
|
- type: euclidean_f1 |
|
value: 90.44334975369456 |
|
- type: euclidean_precision |
|
value: 89.126213592233 |
|
- type: euclidean_recall |
|
value: 91.8 |
|
- type: manhattan_accuracy |
|
value: 99.81584158415842 |
|
- type: manhattan_ap |
|
value: 95.5163172682464 |
|
- type: manhattan_f1 |
|
value: 90.51987767584097 |
|
- type: manhattan_precision |
|
value: 92.3076923076923 |
|
- type: manhattan_recall |
|
value: 88.8 |
|
- type: max_accuracy |
|
value: 99.81584158415842 |
|
- type: max_ap |
|
value: 95.5743678558349 |
|
- type: max_f1 |
|
value: 90.51987767584097 |
|
- task: |
|
type: Clustering |
|
dataset: |
|
type: mteb/stackexchange-clustering |
|
name: MTEB StackExchangeClustering |
|
config: default |
|
split: test |
|
revision: 6cbc1f7b2bc0622f2e39d2c77fa502909748c259 |
|
metrics: |
|
- type: v_measure |
|
value: 62.63235986949449 |
|
- task: |
|
type: Clustering |
|
dataset: |
|
type: mteb/stackexchange-clustering-p2p |
|
name: MTEB StackExchangeClusteringP2P |
|
config: default |
|
split: test |
|
revision: 815ca46b2622cec33ccafc3735d572c266efdb44 |
|
metrics: |
|
- type: v_measure |
|
value: 36.334795589585575 |
|
- task: |
|
type: Reranking |
|
dataset: |
|
type: mteb/stackoverflowdupquestions-reranking |
|
name: MTEB StackOverflowDupQuestions |
|
config: default |
|
split: test |
|
revision: e185fbe320c72810689fc5848eb6114e1ef5ec69 |
|
metrics: |
|
- type: map |
|
value: 52.02955214518782 |
|
- type: mrr |
|
value: 52.8004838298956 |
|
- task: |
|
type: Summarization |
|
dataset: |
|
type: mteb/summeval |
|
name: MTEB SummEval |
|
config: default |
|
split: test |
|
revision: cda12ad7615edc362dbf25a00fdd61d3b1eaf93c |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 30.63769566275453 |
|
- type: cos_sim_spearman |
|
value: 30.422379185989335 |
|
- type: dot_pearson |
|
value: 26.88493071882256 |
|
- type: dot_spearman |
|
value: 26.505249740971305 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: trec-covid |
|
name: MTEB TRECCOVID |
|
config: default |
|
split: test |
|
revision: None |
|
metrics: |
|
- type: map_at_1 |
|
value: 0.21 |
|
- type: map_at_10 |
|
value: 1.654 |
|
- type: map_at_100 |
|
value: 10.095 |
|
- type: map_at_1000 |
|
value: 25.808999999999997 |
|
- type: map_at_3 |
|
value: 0.594 |
|
- type: map_at_5 |
|
value: 0.9289999999999999 |
|
- type: mrr_at_1 |
|
value: 78.0 |
|
- type: mrr_at_10 |
|
value: 87.019 |
|
- type: mrr_at_100 |
|
value: 87.019 |
|
- type: mrr_at_1000 |
|
value: 87.019 |
|
- type: mrr_at_3 |
|
value: 86.333 |
|
- type: mrr_at_5 |
|
value: 86.733 |
|
- type: ndcg_at_1 |
|
value: 73.0 |
|
- type: ndcg_at_10 |
|
value: 66.52900000000001 |
|
- type: ndcg_at_100 |
|
value: 53.433 |
|
- type: ndcg_at_1000 |
|
value: 51.324000000000005 |
|
- type: ndcg_at_3 |
|
value: 72.02199999999999 |
|
- type: ndcg_at_5 |
|
value: 69.696 |
|
- type: precision_at_1 |
|
value: 78.0 |
|
- type: precision_at_10 |
|
value: 70.39999999999999 |
|
- type: precision_at_100 |
|
value: 55.46 |
|
- type: precision_at_1000 |
|
value: 22.758 |
|
- type: precision_at_3 |
|
value: 76.667 |
|
- type: precision_at_5 |
|
value: 74.0 |
|
- type: recall_at_1 |
|
value: 0.21 |
|
- type: recall_at_10 |
|
value: 1.8849999999999998 |
|
- type: recall_at_100 |
|
value: 13.801 |
|
- type: recall_at_1000 |
|
value: 49.649 |
|
- type: recall_at_3 |
|
value: 0.632 |
|
- type: recall_at_5 |
|
value: 1.009 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: webis-touche2020 |
|
name: MTEB Touche2020 |
|
config: default |
|
split: test |
|
revision: None |
|
metrics: |
|
- type: map_at_1 |
|
value: 1.797 |
|
- type: map_at_10 |
|
value: 9.01 |
|
- type: map_at_100 |
|
value: 14.682 |
|
- type: map_at_1000 |
|
value: 16.336000000000002 |
|
- type: map_at_3 |
|
value: 4.546 |
|
- type: map_at_5 |
|
value: 5.9270000000000005 |
|
- type: mrr_at_1 |
|
value: 24.490000000000002 |
|
- type: mrr_at_10 |
|
value: 41.156 |
|
- type: mrr_at_100 |
|
value: 42.392 |
|
- type: mrr_at_1000 |
|
value: 42.408 |
|
- type: mrr_at_3 |
|
value: 38.775999999999996 |
|
- type: mrr_at_5 |
|
value: 40.102 |
|
- type: ndcg_at_1 |
|
value: 21.429000000000002 |
|
- type: ndcg_at_10 |
|
value: 22.222 |
|
- type: ndcg_at_100 |
|
value: 34.405 |
|
- type: ndcg_at_1000 |
|
value: 46.599000000000004 |
|
- type: ndcg_at_3 |
|
value: 25.261 |
|
- type: ndcg_at_5 |
|
value: 22.695999999999998 |
|
- type: precision_at_1 |
|
value: 24.490000000000002 |
|
- type: precision_at_10 |
|
value: 19.796 |
|
- type: precision_at_100 |
|
value: 7.306 |
|
- type: precision_at_1000 |
|
value: 1.5350000000000001 |
|
- type: precision_at_3 |
|
value: 27.211000000000002 |
|
- type: precision_at_5 |
|
value: 22.857 |
|
- type: recall_at_1 |
|
value: 1.797 |
|
- type: recall_at_10 |
|
value: 15.706000000000001 |
|
- type: recall_at_100 |
|
value: 46.412 |
|
- type: recall_at_1000 |
|
value: 83.159 |
|
- type: recall_at_3 |
|
value: 6.1370000000000005 |
|
- type: recall_at_5 |
|
value: 8.599 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/toxic_conversations_50k |
|
name: MTEB ToxicConversationsClassification |
|
config: default |
|
split: test |
|
revision: d7c0de2777da35d6aae2200a62c6e0e5af397c4c |
|
metrics: |
|
- type: accuracy |
|
value: 70.3302 |
|
- type: ap |
|
value: 14.169121204575601 |
|
- type: f1 |
|
value: 54.229345975274235 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/tweet_sentiment_extraction |
|
name: MTEB TweetSentimentExtractionClassification |
|
config: default |
|
split: test |
|
revision: d604517c81ca91fe16a244d1248fc021f9ecee7a |
|
metrics: |
|
- type: accuracy |
|
value: 58.22297679683077 |
|
- type: f1 |
|
value: 58.62984908377875 |
|
- task: |
|
type: Clustering |
|
dataset: |
|
type: mteb/twentynewsgroups-clustering |
|
name: MTEB TwentyNewsgroupsClustering |
|
config: default |
|
split: test |
|
revision: 6125ec4e24fa026cec8a478383ee943acfbd5449 |
|
metrics: |
|
- type: v_measure |
|
value: 49.952922428464255 |
|
- task: |
|
type: PairClassification |
|
dataset: |
|
type: mteb/twittersemeval2015-pairclassification |
|
name: MTEB TwitterSemEval2015 |
|
config: default |
|
split: test |
|
revision: 70970daeab8776df92f5ea462b6173c0b46fd2d1 |
|
metrics: |
|
- type: cos_sim_accuracy |
|
value: 84.68140907194373 |
|
- type: cos_sim_ap |
|
value: 70.12180123666836 |
|
- type: cos_sim_f1 |
|
value: 65.77501791258658 |
|
- type: cos_sim_precision |
|
value: 60.07853403141361 |
|
- type: cos_sim_recall |
|
value: 72.66490765171504 |
|
- type: dot_accuracy |
|
value: 81.92167848840674 |
|
- type: dot_ap |
|
value: 60.49837581423469 |
|
- type: dot_f1 |
|
value: 58.44186046511628 |
|
- type: dot_precision |
|
value: 52.24532224532224 |
|
- type: dot_recall |
|
value: 66.3060686015831 |
|
- type: euclidean_accuracy |
|
value: 84.73505394289802 |
|
- type: euclidean_ap |
|
value: 70.3278904593286 |
|
- type: euclidean_f1 |
|
value: 65.98851124940161 |
|
- type: euclidean_precision |
|
value: 60.38107752956636 |
|
- type: euclidean_recall |
|
value: 72.74406332453826 |
|
- type: manhattan_accuracy |
|
value: 84.73505394289802 |
|
- type: manhattan_ap |
|
value: 70.00737738537337 |
|
- type: manhattan_f1 |
|
value: 65.80150784822642 |
|
- type: manhattan_precision |
|
value: 61.892583120204606 |
|
- type: manhattan_recall |
|
value: 70.23746701846966 |
|
- type: max_accuracy |
|
value: 84.73505394289802 |
|
- type: max_ap |
|
value: 70.3278904593286 |
|
- type: max_f1 |
|
value: 65.98851124940161 |
|
- task: |
|
type: PairClassification |
|
dataset: |
|
type: mteb/twitterurlcorpus-pairclassification |
|
name: MTEB TwitterURLCorpus |
|
config: default |
|
split: test |
|
revision: 8b6510b0b1fa4e4c4f879467980e9be563ec1cdf |
|
metrics: |
|
- type: cos_sim_accuracy |
|
value: 88.44258159661582 |
|
- type: cos_sim_ap |
|
value: 84.91926704880888 |
|
- type: cos_sim_f1 |
|
value: 77.07651086632926 |
|
- type: cos_sim_precision |
|
value: 74.5894554883319 |
|
- type: cos_sim_recall |
|
value: 79.73514012935017 |
|
- type: dot_accuracy |
|
value: 85.88116583226608 |
|
- type: dot_ap |
|
value: 78.9753854779923 |
|
- type: dot_f1 |
|
value: 72.17757637979255 |
|
- type: dot_precision |
|
value: 66.80647486729143 |
|
- type: dot_recall |
|
value: 78.48783492454572 |
|
- type: euclidean_accuracy |
|
value: 88.5299025885823 |
|
- type: euclidean_ap |
|
value: 85.08006075642194 |
|
- type: euclidean_f1 |
|
value: 77.29637336504163 |
|
- type: euclidean_precision |
|
value: 74.69836253950014 |
|
- type: euclidean_recall |
|
value: 80.08161379735141 |
|
- type: manhattan_accuracy |
|
value: 88.55124771995187 |
|
- type: manhattan_ap |
|
value: 85.00941529932851 |
|
- type: manhattan_f1 |
|
value: 77.33100233100232 |
|
- type: manhattan_precision |
|
value: 73.37572573956317 |
|
- type: manhattan_recall |
|
value: 81.73698798891284 |
|
- type: max_accuracy |
|
value: 88.55124771995187 |
|
- type: max_ap |
|
value: 85.08006075642194 |
|
- type: max_f1 |
|
value: 77.33100233100232 |
|
language: |
|
- en |
|
license: mit |
|
--- |
|
|
|
# gte-small |
|
|
|
General Text Embeddings (GTE) model. [Towards General Text Embeddings with Multi-stage Contrastive Learning](https://arxiv.org/abs/2308.03281) |
|
|
|
The GTE models are trained by Alibaba DAMO Academy. They are mainly based on the BERT framework and currently offer three different sizes of models, including [GTE-large](https://huggingface.co/thenlper/gte-large), [GTE-base](https://huggingface.co/thenlper/gte-base), and [GTE-small](https://huggingface.co/thenlper/gte-small). The GTE models are trained on a large-scale corpus of relevance text pairs, covering a wide range of domains and scenarios. This enables the GTE models to be applied to various downstream tasks of text embeddings, including **information retrieval**, **semantic textual similarity**, **text reranking**, etc. |
|
|
|
## Metrics |
|
|
|
We compared the performance of the GTE models with other popular text embedding models on the MTEB benchmark. For more detailed comparison results, please refer to the [MTEB leaderboard](https://huggingface.co/spaces/mteb/leaderboard). |
|
|
|
|
|
|
|
| Model Name | Model Size (GB) | Dimension | Sequence Length | Average (56) | Clustering (11) | Pair Classification (3) | Reranking (4) | Retrieval (15) | STS (10) | Summarization (1) | Classification (12) | |
|
|:----:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:| |
|
| [**gte-large**](https://huggingface.co/thenlper/gte-large) | 0.67 | 1024 | 512 | **63.13** | 46.84 | 85.00 | 59.13 | 52.22 | 83.35 | 31.66 | 73.33 | |
|
| [**gte-base**](https://huggingface.co/thenlper/gte-base) | 0.22 | 768 | 512 | **62.39** | 46.2 | 84.57 | 58.61 | 51.14 | 82.3 | 31.17 | 73.01 | |
|
| [e5-large-v2](https://huggingface.co/intfloat/e5-large-v2) | 1.34 | 1024| 512 | 62.25 | 44.49 | 86.03 | 56.61 | 50.56 | 82.05 | 30.19 | 75.24 | |
|
| [e5-base-v2](https://huggingface.co/intfloat/e5-base-v2) | 0.44 | 768 | 512 | 61.5 | 43.80 | 85.73 | 55.91 | 50.29 | 81.05 | 30.28 | 73.84 | |
|
| [**gte-small**](https://huggingface.co/thenlper/gte-small) | 0.07 | 384 | 512 | **61.36** | 44.89 | 83.54 | 57.7 | 49.46 | 82.07 | 30.42 | 72.31 | |
|
| [text-embedding-ada-002](https://platform.openai.com/docs/guides/embeddings) | - | 1536 | 8192 | 60.99 | 45.9 | 84.89 | 56.32 | 49.25 | 80.97 | 30.8 | 70.93 | |
|
| [e5-small-v2](https://huggingface.co/intfloat/e5-base-v2) | 0.13 | 384 | 512 | 59.93 | 39.92 | 84.67 | 54.32 | 49.04 | 80.39 | 31.16 | 72.94 | |
|
| [sentence-t5-xxl](https://huggingface.co/sentence-transformers/sentence-t5-xxl) | 9.73 | 768 | 512 | 59.51 | 43.72 | 85.06 | 56.42 | 42.24 | 82.63 | 30.08 | 73.42 | |
|
| [all-mpnet-base-v2](https://huggingface.co/sentence-transformers/all-mpnet-base-v2) | 0.44 | 768 | 514 | 57.78 | 43.69 | 83.04 | 59.36 | 43.81 | 80.28 | 27.49 | 65.07 | |
|
| [sgpt-bloom-7b1-msmarco](https://huggingface.co/bigscience/sgpt-bloom-7b1-msmarco) | 28.27 | 4096 | 2048 | 57.59 | 38.93 | 81.9 | 55.65 | 48.22 | 77.74 | 33.6 | 66.19 | |
|
| [all-MiniLM-L12-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L12-v2) | 0.13 | 384 | 512 | 56.53 | 41.81 | 82.41 | 58.44 | 42.69 | 79.8 | 27.9 | 63.21 | |
|
| [all-MiniLM-L6-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2) | 0.09 | 384 | 512 | 56.26 | 42.35 | 82.37 | 58.04 | 41.95 | 78.9 | 30.81 | 63.05 | |
|
| [contriever-base-msmarco](https://huggingface.co/nthakur/contriever-base-msmarco) | 0.44 | 768 | 512 | 56.00 | 41.1 | 82.54 | 53.14 | 41.88 | 76.51 | 30.36 | 66.68 | |
|
| [sentence-t5-base](https://huggingface.co/sentence-transformers/sentence-t5-base) | 0.22 | 768 | 512 | 55.27 | 40.21 | 85.18 | 53.09 | 33.63 | 81.14 | 31.39 | 69.81 | |
|
|
|
|
|
## Usage |
|
|
|
Code example |
|
|
|
```python |
|
import torch.nn.functional as F |
|
from torch import Tensor |
|
from transformers import AutoTokenizer, AutoModel |
|
|
|
def average_pool(last_hidden_states: Tensor, |
|
attention_mask: Tensor) -> Tensor: |
|
last_hidden = last_hidden_states.masked_fill(~attention_mask[..., None].bool(), 0.0) |
|
return last_hidden.sum(dim=1) / attention_mask.sum(dim=1)[..., None] |
|
|
|
input_texts = [ |
|
"what is the capital of China?", |
|
"how to implement quick sort in python?", |
|
"Beijing", |
|
"sorting algorithms" |
|
] |
|
|
|
tokenizer = AutoTokenizer.from_pretrained("thenlper/gte-small") |
|
model = AutoModel.from_pretrained("thenlper/gte-small") |
|
|
|
# Tokenize the input texts |
|
batch_dict = tokenizer(input_texts, max_length=512, padding=True, truncation=True, return_tensors='pt') |
|
|
|
outputs = model(**batch_dict) |
|
embeddings = average_pool(outputs.last_hidden_state, batch_dict['attention_mask']) |
|
|
|
# (Optionally) normalize embeddings |
|
embeddings = F.normalize(embeddings, p=2, dim=1) |
|
scores = (embeddings[:1] @ embeddings[1:].T) * 100 |
|
print(scores.tolist()) |
|
``` |
|
|
|
Use with sentence-transformers: |
|
```python |
|
from sentence_transformers import SentenceTransformer |
|
from sentence_transformers.util import cos_sim |
|
|
|
sentences = ['That is a happy person', 'That is a very happy person'] |
|
|
|
model = SentenceTransformer('thenlper/gte-large') |
|
embeddings = model.encode(sentences) |
|
print(cos_sim(embeddings[0], embeddings[1])) |
|
``` |
|
|
|
### Limitation |
|
|
|
This model exclusively caters to English texts, and any lengthy texts will be truncated to a maximum of 512 tokens. |
|
|
|
### Citation |
|
|
|
If you find our paper or models helpful, please consider citing them as follows: |
|
|
|
``` |
|
@misc{li2023general, |
|
title={Towards General Text Embeddings with Multi-stage Contrastive Learning}, |
|
author={Zehan Li and Xin Zhang and Yanzhao Zhang and Dingkun Long and Pengjun Xie and Meishan Zhang}, |
|
year={2023}, |
|
eprint={2308.03281}, |
|
archivePrefix={arXiv}, |
|
primaryClass={cs.CL} |
|
} |
|
``` |
|
|