votaquangnhat's picture
End of training
6f16453 verified
---
library_name: transformers
license: mit
base_model: danghuy1999/gpt2-viwiki
tags:
- generated_from_trainer
model-index:
- name: vietnamese-poem-gpt2-sauchu
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# vietnamese-poem-gpt2-sauchu
This model is a fine-tuned version of [danghuy1999/gpt2-viwiki](https://huggingface.co/danghuy1999/gpt2-viwiki) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 5.2482
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 20
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| No log | 1.0 | 136 | 6.4141 |
| No log | 2.0 | 272 | 6.0165 |
| No log | 3.0 | 408 | 5.7615 |
| 6.3641 | 4.0 | 544 | 5.5938 |
| 6.3641 | 5.0 | 680 | 5.4852 |
| 6.3641 | 6.0 | 816 | 5.4277 |
| 6.3641 | 7.0 | 952 | 5.3807 |
| 5.418 | 8.0 | 1088 | 5.3497 |
| 5.418 | 9.0 | 1224 | 5.3235 |
| 5.418 | 10.0 | 1360 | 5.3024 |
| 5.418 | 11.0 | 1496 | 5.2961 |
| 5.1065 | 12.0 | 1632 | 5.2781 |
| 5.1065 | 13.0 | 1768 | 5.2753 |
| 5.1065 | 14.0 | 1904 | 5.2596 |
| 4.9363 | 15.0 | 2040 | 5.2568 |
| 4.9363 | 16.0 | 2176 | 5.2558 |
| 4.9363 | 17.0 | 2312 | 5.2497 |
| 4.9363 | 18.0 | 2448 | 5.2536 |
| 4.8312 | 19.0 | 2584 | 5.2485 |
| 4.8312 | 20.0 | 2720 | 5.2482 |
### Framework versions
- Transformers 4.47.1
- Pytorch 2.5.1+cu121
- Datasets 3.2.0
- Tokenizers 0.21.0