tiennguyenbnbk's picture
End of training
a900633 verified
|
raw
history blame
3.57 kB
metadata
base_model: vinai/phobert-base-v2
tags:
  - generated_from_trainer
metrics:
  - accuracy
  - recall
  - precision
model-index:
  - name: cls-comment-phobert-base-v2-v3.2
    results: []

cls-comment-phobert-base-v2-v3.2

This model is a fine-tuned version of vinai/phobert-base-v2 on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6534
  • Accuracy: 0.9222
  • F1 Score: 0.9110
  • Recall: 0.9115
  • Precision: 0.9149

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 128
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • training_steps: 4000
  • label_smoothing_factor: 0.1

Training results

Training Loss Epoch Step Validation Loss Accuracy F1 Score Recall Precision
1.8971 0.87 100 1.7443 0.4064 0.0826 0.1429 0.0581
1.5979 1.73 200 1.3562 0.6147 0.2496 0.2794 0.2703
1.2633 2.6 300 1.0631 0.7399 0.4779 0.4720 0.5906
1.0047 3.46 400 0.8834 0.8255 0.5990 0.6173 0.5876
0.8689 4.33 500 0.8139 0.8434 0.6169 0.6459 0.5936
0.7901 5.19 600 0.7564 0.8659 0.6766 0.6790 0.7339
0.7217 6.06 700 0.7114 0.8886 0.8211 0.8018 0.8731
0.6635 6.93 800 0.6800 0.9041 0.8787 0.8775 0.8829
0.6119 7.79 900 0.6681 0.9073 0.8870 0.8844 0.8917
0.5888 8.66 1000 0.6620 0.9130 0.8948 0.8961 0.8975
0.5721 9.52 1100 0.6746 0.9098 0.8931 0.9058 0.8849
0.5521 10.39 1200 0.6434 0.9231 0.9061 0.9038 0.9086
0.5451 11.26 1300 0.6397 0.9231 0.9095 0.9042 0.9162
0.5315 12.12 1400 0.6552 0.9174 0.9044 0.9128 0.8993
0.5182 12.99 1500 0.6483 0.9206 0.9009 0.9063 0.8973
0.5078 13.85 1600 0.6534 0.9222 0.9110 0.9115 0.9149
0.498 14.72 1700 0.6493 0.9255 0.9080 0.9016 0.9152
0.4998 15.58 1800 0.6451 0.9244 0.9073 0.9146 0.9009
0.49 16.45 1900 0.6693 0.9174 0.9018 0.9039 0.9019
0.4882 17.32 2000 0.6501 0.9236 0.9057 0.9101 0.9023
0.4859 18.18 2100 0.6591 0.9258 0.9110 0.9126 0.9113

Framework versions

  • Transformers 4.38.2
  • Pytorch 2.2.1+cu121
  • Datasets 2.18.0
  • Tokenizers 0.15.2