metadata
base_model: vinai/phobert-base-v2
tags:
- generated_from_trainer
metrics:
- accuracy
- recall
- precision
model-index:
- name: cls-comment-phobert-base-v2-v3.2
results: []
cls-comment-phobert-base-v2-v3.2
This model is a fine-tuned version of vinai/phobert-base-v2 on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.6534
- Accuracy: 0.9222
- F1 Score: 0.9110
- Recall: 0.9115
- Precision: 0.9149
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- training_steps: 4000
- label_smoothing_factor: 0.1
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 Score | Recall | Precision |
---|---|---|---|---|---|---|---|
1.8971 | 0.87 | 100 | 1.7443 | 0.4064 | 0.0826 | 0.1429 | 0.0581 |
1.5979 | 1.73 | 200 | 1.3562 | 0.6147 | 0.2496 | 0.2794 | 0.2703 |
1.2633 | 2.6 | 300 | 1.0631 | 0.7399 | 0.4779 | 0.4720 | 0.5906 |
1.0047 | 3.46 | 400 | 0.8834 | 0.8255 | 0.5990 | 0.6173 | 0.5876 |
0.8689 | 4.33 | 500 | 0.8139 | 0.8434 | 0.6169 | 0.6459 | 0.5936 |
0.7901 | 5.19 | 600 | 0.7564 | 0.8659 | 0.6766 | 0.6790 | 0.7339 |
0.7217 | 6.06 | 700 | 0.7114 | 0.8886 | 0.8211 | 0.8018 | 0.8731 |
0.6635 | 6.93 | 800 | 0.6800 | 0.9041 | 0.8787 | 0.8775 | 0.8829 |
0.6119 | 7.79 | 900 | 0.6681 | 0.9073 | 0.8870 | 0.8844 | 0.8917 |
0.5888 | 8.66 | 1000 | 0.6620 | 0.9130 | 0.8948 | 0.8961 | 0.8975 |
0.5721 | 9.52 | 1100 | 0.6746 | 0.9098 | 0.8931 | 0.9058 | 0.8849 |
0.5521 | 10.39 | 1200 | 0.6434 | 0.9231 | 0.9061 | 0.9038 | 0.9086 |
0.5451 | 11.26 | 1300 | 0.6397 | 0.9231 | 0.9095 | 0.9042 | 0.9162 |
0.5315 | 12.12 | 1400 | 0.6552 | 0.9174 | 0.9044 | 0.9128 | 0.8993 |
0.5182 | 12.99 | 1500 | 0.6483 | 0.9206 | 0.9009 | 0.9063 | 0.8973 |
0.5078 | 13.85 | 1600 | 0.6534 | 0.9222 | 0.9110 | 0.9115 | 0.9149 |
0.498 | 14.72 | 1700 | 0.6493 | 0.9255 | 0.9080 | 0.9016 | 0.9152 |
0.4998 | 15.58 | 1800 | 0.6451 | 0.9244 | 0.9073 | 0.9146 | 0.9009 |
0.49 | 16.45 | 1900 | 0.6693 | 0.9174 | 0.9018 | 0.9039 | 0.9019 |
0.4882 | 17.32 | 2000 | 0.6501 | 0.9236 | 0.9057 | 0.9101 | 0.9023 |
0.4859 | 18.18 | 2100 | 0.6591 | 0.9258 | 0.9110 | 0.9126 | 0.9113 |
Framework versions
- Transformers 4.38.2
- Pytorch 2.2.1+cu121
- Datasets 2.18.0
- Tokenizers 0.15.2