SmartBERT-v2 / README.md
devilyouwei's picture
Update README.md
a364f07 verified
|
raw
history blame
2.24 kB
metadata
license: mit
language:
  - en
inference: true
base_model:
  - microsoft/codebert-base-mlm
pipeline_tag: fill-mask
tags:
  - fill-mask
  - smart-contract
  - web3
  - software-engineering
  - embedding
  - codebert
library_name: transformers

SmartBERT V2 CodeBERT

SmartBERT

Overview

SmartBERT V2 CodeBERT is a pre-trained model, initialized with CodeBERT-base-mlm, designed to transfer Smart Contract function-level code into embeddings effectively.

  • Training Data: Trained on 16,000 smart contracts.
  • Hardware: Utilized 2 Nvidia A100 80G GPUs.
  • Training Duration: More than 10 hours.
  • Evaluation Data: Evaluated on 4,000 smart contracts.

Preprocessing

All newline (\n) and tab (\t) characters in the function code were replaced with a single space to ensure consistency in the input data format.

Base Model

Training Setup

from transformers import TrainingArguments

training_args = TrainingArguments(
    output_dir=OUTPUT_DIR,
    overwrite_output_dir=True,
    num_train_epochs=20,
    per_device_train_batch_size=64,
    save_steps=10000,
    save_total_limit=2,
    evaluation_strategy="steps",
    eval_steps=10000,
    resume_from_checkpoint=checkpoint
)

How to Use

To train and deploy the SmartBERT V2 model for Web API services, please refer to our GitHub repository: web3se-lab/SmartBERT.

Or use pipline:

from transformers import RobertaTokenizer, RobertaForMaskedLM, pipeline

model = RobertaForMaskedLM.from_pretrained('web3se/SmartBERT-v3')
tokenizer = RobertaTokenizer.from_pretrained('web3se/SmartBERT-v3')

code_example = "function totalSupply() external view <mask> (uint256);"
fill_mask = pipeline('fill-mask', model=model, tokenizer=tokenizer)

outputs = fill_mask(code_example)
print(outputs)

Contributors

Sponsors