metadata
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:212930
- loss:CosineSimilarityLoss
base_model: sentence-transformers/paraphrase-multilingual-mpnet-base-v2
widget:
- source_sentence: analisis perekonomian indonesia triwulan i 2007
sentences:
- Indikator Ekonomi Februari 2017
- Perkembangan Harga Produsen Gabah Maret 2021
- >-
Hasil Survei Komoditas Perikanan Potensi 2021 Profil Rumah Tangga Usaha
Budidaya Rumput Laut
- source_sentence: Analisis indikator ekonomi Indonesia September 2023
sentences:
- >-
Buletin Statistik Perdagangan Luar Negeri Ekspor Menurut Kelompok
Komoditi dan Negara Oktober 2011
- April 2015 Harga Grosir Naik 0,17%
- Direktori Eksportir Indonesia 2014
- source_sentence: Ekonomi Indonesia awal 2009
sentences:
- Statistik Hotel dan Akomodasi Lainnya di Indonesia 2005
- Neraca Pemerintahan Pusat Indonesia Triwulanan 2007-2013:2
- >-
Persentase Rumah Tangga menurut Provinsi dan Sumber Penerangan Listrik
PLN, 1993-2022
- source_sentence: >-
Berapa persen kenaikan ekspor Indonesia pada Oktober 2024 dibandingkan
September 2024?
sentences:
- Impor Indonesia mengalami penurunan sebesar 5% pada bulan Oktober 2024.
- Statistik Pendidikan 2009
- Penduduk Jambi Hasil Sensus Penduduk SP2000
- source_sentence: Berapa persen deflasi ysng terjadi paa Maret 2010?
sentences:
- Pada Bulan Maret 2010 Terjadi Deflasi Sebesar 0,14 Persen.
- >-
Analisis Rumah Tangga Usaha Hortikultura di Indonesia Hasil Sensus
Pertanian 2013
- Inflasi September 2008 sebesar 0,97 persen.
datasets:
- yahyaabd/allstats-semantic-search-synthetic-dataset-v1
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
- pearson_cosine
- spearman_cosine
model-index:
- name: >-
SentenceTransformer based on
sentence-transformers/paraphrase-multilingual-mpnet-base-v2
results:
- task:
type: semantic-similarity
name: Semantic Similarity
dataset:
name: allstats semantic search v1 2 dev
type: allstats-semantic-search-v1-2-dev
metrics:
- type: pearson_cosine
value: 0.9923210175659568
name: Pearson Cosine
- type: spearman_cosine
value: 0.9293313388011538
name: Spearman Cosine
- task:
type: semantic-similarity
name: Semantic Similarity
dataset:
name: allstat semantic search v1 test
type: allstat-semantic-search-v1-test
metrics:
- type: pearson_cosine
value: 0.9929329799075536
name: Pearson Cosine
- type: spearman_cosine
value: 0.9283010769773397
name: Spearman Cosine
SentenceTransformer based on sentence-transformers/paraphrase-multilingual-mpnet-base-v2
This is a sentence-transformers model finetuned from sentence-transformers/paraphrase-multilingual-mpnet-base-v2 on the allstats-semantic-search-synthetic-dataset-v1 dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: sentence-transformers/paraphrase-multilingual-mpnet-base-v2
- Maximum Sequence Length: 128 tokens
- Output Dimensionality: 768 dimensions
- Similarity Function: Cosine Similarity
- Training Dataset:
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: XLMRobertaModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("yahyaabd/allstats-semantic-search-model-v1-2")
# Run inference
sentences = [
'Berapa persen deflasi ysng terjadi paa Maret 2010?',
'Pada Bulan Maret 2010 Terjadi Deflasi Sebesar 0,14 Persen.',
'Inflasi September 2008 sebesar 0,97 persen.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Semantic Similarity
- Datasets:
allstats-semantic-search-v1-2-dev
andallstat-semantic-search-v1-test
- Evaluated with
EmbeddingSimilarityEvaluator
Metric | allstats-semantic-search-v1-2-dev | allstat-semantic-search-v1-test |
---|---|---|
pearson_cosine | 0.9923 | 0.9929 |
spearman_cosine | 0.9293 | 0.9283 |
Training Details
Training Dataset
allstats-semantic-search-synthetic-dataset-v1
- Dataset: allstats-semantic-search-synthetic-dataset-v1 at c477abf
- Size: 212,930 training samples
- Columns:
query
,doc
, andlabel
- Approximate statistics based on the first 1000 samples:
query doc label type string string float details - min: 5 tokens
- mean: 11.52 tokens
- max: 32 tokens
- min: 4 tokens
- mean: 14.85 tokens
- max: 70 tokens
- min: 0.0
- mean: 0.51
- max: 1.0
- Samples:
query doc label studi tentang kemiskinan urban
Perkembangan Mingguan Harga Eceran Beberapa Bahan Pokok di Ibukota Provinsi Seluruh Indonesia (Juli-Desember 2018)
0.1
Harga gabah di tingkat produsen bulan September
Upah Buruh Juli 2020
0.1
Data perusahaan konstruksi di wilayah timur Indonesia thn 2013
Direktori Perusahaan Konstruksi 2013 Buku 6 Maluku dan Papua
0.92
- Loss:
CosineSimilarityLoss
with these parameters:{ "loss_fct": "torch.nn.modules.loss.MSELoss" }
Evaluation Dataset
allstats-semantic-search-synthetic-dataset-v1
- Dataset: allstats-semantic-search-synthetic-dataset-v1 at c477abf
- Size: 26,616 evaluation samples
- Columns:
query
,doc
, andlabel
- Approximate statistics based on the first 1000 samples:
query doc label type string string float details - min: 5 tokens
- mean: 11.33 tokens
- max: 53 tokens
- min: 4 tokens
- mean: 14.6 tokens
- max: 69 tokens
- min: 0.0
- mean: 0.5
- max: 1.0
- Samples:
query doc label Informasi potensi deas di Maluku 011
Statistik Potensi Desa Provinsi Maluku 2011
0.87
Berapa persen kenaikan jumlah penumpang angkutan udara internasional pada Januari 2024 dibandingkan Desember 2023?
Kenaikan jumlah penumpang bulan lainnya
0.0
informasi tentang potensi desa jambi tahun 2005
Statistik Potensi Desa Provinsi Jambi 2005
0.85
- Loss:
CosineSimilarityLoss
with these parameters:{ "loss_fct": "torch.nn.modules.loss.MSELoss" }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: stepsper_device_train_batch_size
: 32per_device_eval_batch_size
: 32num_train_epochs
: 6warmup_ratio
: 0.1fp16
: True
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: stepsprediction_loss_only
: Trueper_device_train_batch_size
: 32per_device_eval_batch_size
: 32per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 5e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 6max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.1warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Truefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Nonehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseinclude_for_metrics
: []eval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseuse_liger_kernel
: Falseeval_use_gather_object
: Falseaverage_tokens_across_devices
: Falseprompts
: Nonebatch_sampler
: batch_samplermulti_dataset_batch_sampler
: proportional
Training Logs
Click to expand
Epoch | Step | Training Loss | Validation Loss | allstats-semantic-search-v1-2-dev_spearman_cosine | allstat-semantic-search-v1-test_spearman_cosine |
---|---|---|---|---|---|
0.0376 | 250 | 0.0734 | 0.0464 | 0.6927 | - |
0.0751 | 500 | 0.043 | 0.0362 | 0.7146 | - |
0.1127 | 750 | 0.0353 | 0.0288 | 0.7364 | - |
0.1503 | 1000 | 0.0271 | 0.0274 | 0.7571 | - |
0.1878 | 1250 | 0.0241 | 0.0225 | 0.7738 | - |
0.2254 | 1500 | 0.0228 | 0.0203 | 0.7699 | - |
0.2630 | 1750 | 0.0207 | 0.0197 | 0.7881 | - |
0.3005 | 2000 | 0.0187 | 0.0191 | 0.7900 | - |
0.3381 | 2250 | 0.0194 | 0.0183 | 0.7794 | - |
0.3757 | 2500 | 0.0182 | 0.0178 | 0.7870 | - |
0.4132 | 2750 | 0.0198 | 0.0183 | 0.8009 | - |
0.4508 | 3000 | 0.0189 | 0.0182 | 0.7912 | - |
0.4884 | 3250 | 0.0177 | 0.0168 | 0.7963 | - |
0.5259 | 3500 | 0.0178 | 0.0173 | 0.7920 | - |
0.5635 | 3750 | 0.017 | 0.0183 | 0.8014 | - |
0.6011 | 4000 | 0.0186 | 0.0180 | 0.7777 | - |
0.6386 | 4250 | 0.0187 | 0.0167 | 0.7976 | - |
0.6762 | 4500 | 0.015 | 0.0154 | 0.8194 | - |
0.7137 | 4750 | 0.0158 | 0.0157 | 0.8062 | - |
0.7513 | 5000 | 0.0152 | 0.0148 | 0.8117 | - |
0.7889 | 5250 | 0.0148 | 0.0149 | 0.8115 | - |
0.8264 | 5500 | 0.0146 | 0.0141 | 0.8175 | - |
0.8640 | 5750 | 0.0154 | 0.0144 | 0.7951 | - |
0.9016 | 6000 | 0.0155 | 0.0152 | 0.8163 | - |
0.9391 | 6250 | 0.0145 | 0.0136 | 0.8216 | - |
0.9767 | 6500 | 0.0149 | 0.0149 | 0.8140 | - |
1.0143 | 6750 | 0.0132 | 0.0132 | 0.8179 | - |
1.0518 | 7000 | 0.0108 | 0.0124 | 0.8232 | - |
1.0894 | 7250 | 0.0109 | 0.0120 | 0.8330 | - |
1.1270 | 7500 | 0.0112 | 0.0132 | 0.8219 | - |
1.1645 | 7750 | 0.0116 | 0.0124 | 0.8226 | - |
1.2021 | 8000 | 0.0121 | 0.0120 | 0.8151 | - |
1.2397 | 8250 | 0.0109 | 0.0119 | 0.8384 | - |
1.2772 | 8500 | 0.0103 | 0.0114 | 0.8415 | - |
1.3148 | 8750 | 0.0105 | 0.0116 | 0.8191 | - |
1.3524 | 9000 | 0.0104 | 0.0122 | 0.8292 | - |
1.3899 | 9250 | 0.0108 | 0.0117 | 0.8292 | - |
1.4275 | 9500 | 0.011 | 0.0118 | 0.8339 | - |
1.4651 | 9750 | 0.0105 | 0.0106 | 0.8367 | - |
1.5026 | 10000 | 0.0093 | 0.0098 | 0.8467 | - |
1.5402 | 10250 | 0.0105 | 0.0101 | 0.8334 | - |
1.5778 | 10500 | 0.0102 | 0.0106 | 0.8324 | - |
1.6153 | 10750 | 0.01 | 0.0097 | 0.8472 | - |
1.6529 | 11000 | 0.0106 | 0.0098 | 0.8378 | - |
1.6905 | 11250 | 0.0088 | 0.0095 | 0.8531 | - |
1.7280 | 11500 | 0.0085 | 0.0095 | 0.8409 | - |
1.7656 | 11750 | 0.0089 | 0.0091 | 0.8431 | - |
1.8032 | 12000 | 0.0083 | 0.0088 | 0.8524 | - |
1.8407 | 12250 | 0.0082 | 0.0088 | 0.8591 | - |
1.8783 | 12500 | 0.0078 | 0.0092 | 0.8478 | - |
1.9159 | 12750 | 0.009 | 0.0085 | 0.8480 | - |
1.9534 | 13000 | 0.0082 | 0.0089 | 0.8465 | - |
1.9910 | 13250 | 0.0076 | 0.0085 | 0.8564 | - |
2.0285 | 13500 | 0.0059 | 0.0082 | 0.8602 | - |
2.0661 | 13750 | 0.0073 | 0.0081 | 0.8558 | - |
2.1037 | 14000 | 0.0075 | 0.0081 | 0.8492 | - |
2.1412 | 14250 | 0.0066 | 0.0077 | 0.8520 | - |
2.1788 | 14500 | 0.0066 | 0.0076 | 0.8599 | - |
2.2164 | 14750 | 0.007 | 0.0080 | 0.8589 | - |
2.2539 | 15000 | 0.0065 | 0.0076 | 0.8552 | - |
2.2915 | 15250 | 0.0071 | 0.0075 | 0.8604 | - |
2.3291 | 15500 | 0.0062 | 0.0073 | 0.8714 | - |
2.3666 | 15750 | 0.0058 | 0.0069 | 0.8714 | - |
2.4042 | 16000 | 0.0066 | 0.0072 | 0.8570 | - |
2.4418 | 16250 | 0.0058 | 0.0069 | 0.8757 | - |
2.4793 | 16500 | 0.0059 | 0.0067 | 0.8726 | - |
2.5169 | 16750 | 0.0057 | 0.0067 | 0.8663 | - |
2.5545 | 17000 | 0.0058 | 0.0068 | 0.8703 | - |
2.5920 | 17250 | 0.0058 | 0.0068 | 0.8765 | - |
2.6296 | 17500 | 0.006 | 0.0067 | 0.8729 | - |
2.6672 | 17750 | 0.0057 | 0.0067 | 0.8689 | - |
2.7047 | 18000 | 0.0055 | 0.0065 | 0.8750 | - |
2.7423 | 18250 | 0.0056 | 0.0066 | 0.8734 | - |
2.7799 | 18500 | 0.0053 | 0.0062 | 0.8745 | - |
2.8174 | 18750 | 0.0053 | 0.0062 | 0.8814 | - |
2.8550 | 19000 | 0.0048 | 0.0063 | 0.8839 | - |
2.8926 | 19250 | 0.005 | 0.0063 | 0.8741 | - |
2.9301 | 19500 | 0.0063 | 0.0061 | 0.8752 | - |
2.9677 | 19750 | 0.0052 | 0.0059 | 0.8790 | - |
3.0053 | 20000 | 0.0049 | 0.0058 | 0.8825 | - |
3.0428 | 20250 | 0.0042 | 0.0059 | 0.8787 | - |
3.0804 | 20500 | 0.0043 | 0.0056 | 0.8839 | - |
3.1180 | 20750 | 0.0036 | 0.0058 | 0.8870 | - |
3.1555 | 21000 | 0.004 | 0.0056 | 0.8825 | - |
3.1931 | 21250 | 0.0041 | 0.0056 | 0.8884 | - |
3.2307 | 21500 | 0.004 | 0.0054 | 0.8872 | - |
3.2682 | 21750 | 0.0044 | 0.0052 | 0.8838 | - |
3.3058 | 22000 | 0.0036 | 0.0053 | 0.8904 | - |
3.3434 | 22250 | 0.0036 | 0.0054 | 0.8898 | - |
3.3809 | 22500 | 0.0037 | 0.0051 | 0.8938 | - |
3.4185 | 22750 | 0.0036 | 0.0051 | 0.8953 | - |
3.4560 | 23000 | 0.0036 | 0.0051 | 0.8935 | - |
3.4936 | 23250 | 0.004 | 0.0049 | 0.8955 | - |
3.5312 | 23500 | 0.0033 | 0.0051 | 0.8912 | - |
3.5687 | 23750 | 0.0037 | 0.0048 | 0.8995 | - |
3.6063 | 24000 | 0.0037 | 0.0048 | 0.8887 | - |
3.6439 | 24250 | 0.0037 | 0.0048 | 0.8921 | - |
3.6814 | 24500 | 0.0034 | 0.0046 | 0.9001 | - |
3.7190 | 24750 | 0.0041 | 0.0048 | 0.9008 | - |
3.7566 | 25000 | 0.0037 | 0.0048 | 0.8928 | - |
3.7941 | 25250 | 0.0038 | 0.0049 | 0.8949 | - |
3.8317 | 25500 | 0.0037 | 0.0045 | 0.9029 | - |
3.8693 | 25750 | 0.0034 | 0.0057 | 0.8962 | - |
3.9068 | 26000 | 0.0035 | 0.0047 | 0.8963 | - |
3.9444 | 26250 | 0.0039 | 0.0044 | 0.9026 | - |
3.9820 | 26500 | 0.0034 | 0.0044 | 0.8994 | - |
4.0195 | 26750 | 0.0029 | 0.0042 | 0.9039 | - |
4.0571 | 27000 | 0.0025 | 0.0040 | 0.9047 | - |
4.0947 | 27250 | 0.0027 | 0.0041 | 0.9033 | - |
4.1322 | 27500 | 0.0027 | 0.0041 | 0.9034 | - |
4.1698 | 27750 | 0.0025 | 0.0040 | 0.9040 | - |
4.2074 | 28000 | 0.0033 | 0.0041 | 0.9079 | - |
4.2449 | 28250 | 0.0027 | 0.0040 | 0.9078 | - |
4.2825 | 28500 | 0.0024 | 0.0040 | 0.9059 | - |
4.3201 | 28750 | 0.0026 | 0.0040 | 0.9084 | - |
4.3576 | 29000 | 0.0021 | 0.0039 | 0.9101 | - |
4.3952 | 29250 | 0.0024 | 0.0040 | 0.9081 | - |
4.4328 | 29500 | 0.0024 | 0.0039 | 0.9128 | - |
4.4703 | 29750 | 0.0027 | 0.0039 | 0.9067 | - |
4.5079 | 30000 | 0.003 | 0.0038 | 0.9120 | - |
4.5455 | 30250 | 0.0024 | 0.0037 | 0.9140 | - |
4.5830 | 30500 | 0.0025 | 0.0037 | 0.9116 | - |
4.6206 | 30750 | 0.0023 | 0.0037 | 0.9124 | - |
4.6582 | 31000 | 0.0026 | 0.0036 | 0.9161 | - |
4.6957 | 31250 | 0.0021 | 0.0036 | 0.9155 | - |
4.7333 | 31500 | 0.0025 | 0.0035 | 0.9147 | - |
4.7708 | 31750 | 0.0023 | 0.0035 | 0.9171 | - |
4.8084 | 32000 | 0.0024 | 0.0035 | 0.9153 | - |
4.8460 | 32250 | 0.002 | 0.0035 | 0.9153 | - |
4.8835 | 32500 | 0.0025 | 0.0034 | 0.9173 | - |
4.9211 | 32750 | 0.0018 | 0.0035 | 0.9180 | - |
4.9587 | 33000 | 0.0021 | 0.0035 | 0.9201 | - |
4.9962 | 33250 | 0.0019 | 0.0035 | 0.9205 | - |
5.0338 | 33500 | 0.0016 | 0.0034 | 0.9223 | - |
5.0714 | 33750 | 0.0016 | 0.0034 | 0.9217 | - |
5.1089 | 34000 | 0.0015 | 0.0033 | 0.9208 | - |
5.1465 | 34250 | 0.002 | 0.0034 | 0.9234 | - |
5.1841 | 34500 | 0.0017 | 0.0033 | 0.9212 | - |
5.2216 | 34750 | 0.002 | 0.0033 | 0.9212 | - |
5.2592 | 35000 | 0.0015 | 0.0032 | 0.9241 | - |
5.2968 | 35250 | 0.002 | 0.0031 | 0.9232 | - |
5.3343 | 35500 | 0.0017 | 0.0031 | 0.9251 | - |
5.3719 | 35750 | 0.0015 | 0.0031 | 0.9256 | - |
5.4095 | 36000 | 0.0018 | 0.0031 | 0.9246 | - |
5.4470 | 36250 | 0.0015 | 0.0030 | 0.9257 | - |
5.4846 | 36500 | 0.0017 | 0.0030 | 0.9261 | - |
5.5222 | 36750 | 0.0018 | 0.0030 | 0.9251 | - |
5.5597 | 37000 | 0.0016 | 0.0030 | 0.9270 | - |
5.5973 | 37250 | 0.0016 | 0.0029 | 0.9275 | - |
5.6349 | 37500 | 0.0017 | 0.0029 | 0.9283 | - |
5.6724 | 37750 | 0.0015 | 0.0029 | 0.9277 | - |
5.7100 | 38000 | 0.0017 | 0.0029 | 0.9286 | - |
5.7476 | 38250 | 0.0015 | 0.0029 | 0.9284 | - |
5.7851 | 38500 | 0.0015 | 0.0029 | 0.9286 | - |
5.8227 | 38750 | 0.0014 | 0.0029 | 0.9287 | - |
5.8603 | 39000 | 0.0015 | 0.0028 | 0.9290 | - |
5.8978 | 39250 | 0.0014 | 0.0028 | 0.9291 | - |
5.9354 | 39500 | 0.0014 | 0.0028 | 0.9293 | - |
5.9730 | 39750 | 0.0015 | 0.0028 | 0.9293 | - |
6.0 | 39930 | - | - | - | 0.9283 |
Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.3.1
- Transformers: 4.47.1
- PyTorch: 2.2.2+cu121
- Accelerate: 1.2.1
- Datasets: 3.2.0
- Tokenizers: 0.21.0
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}