yumjunstar's picture
update model card README.md
b39c871
metadata
license: apache-2.0
tags:
  - generated_from_trainer
metrics:
  - wer
  - accuracy
model-index:
  - name: trocr-small-printedkorean-deleteunusedchar
    results: []

trocr-small-printedkorean-deleteunusedchar

This model is a fine-tuned version of team-lucid/trocr-small-korean on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 2.1253
  • Cer: 0.3884
  • Wer: 0.4405
  • Accuracy: 27.0903

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 4e-05
  • train_batch_size: 128
  • eval_batch_size: 192
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Cer Wer Accuracy
3.5404 0.43 1000 3.5688 0.5737 0.6446 17.7258
3.365 0.85 2000 3.4212 0.5664 0.6546 18.0602
3.266 1.28 3000 3.3538 0.5637 0.6815 18.7291
3.2922 1.71 4000 3.3051 0.5613 0.7161 18.0602
3.1287 2.13 5000 3.2649 0.5577 0.7164 18.7291
3.0906 2.56 6000 3.2016 0.5572 0.6139 18.3946
3.0015 2.99 7000 3.0851 0.5530 0.6018 18.3946
2.7418 3.42 8000 2.8927 0.5264 0.6052 19.3980
2.5107 3.84 9000 2.6466 0.4821 0.5881 19.3980
2.3091 4.27 10000 2.4865 0.4545 0.5651 20.4013
2.1395 4.7 11000 2.3749 0.4336 0.5323 21.7391
2.0453 5.12 12000 2.3070 0.4222 0.5157 21.7391
2.0421 5.55 13000 2.2667 0.4143 0.5001 24.0803
2.0085 5.98 14000 2.2201 0.4060 0.4809 24.0803
1.8766 6.4 15000 2.1988 0.4026 0.4766 23.7458
1.8987 6.83 16000 2.1788 0.3969 0.4658 24.4147
1.8921 7.26 17000 2.1702 0.3955 0.4581 24.4147
1.8253 7.69 18000 2.1554 0.3938 0.4513 26.7559
1.8281 8.11 19000 2.1481 0.3925 0.4534 26.0870
1.8751 8.54 20000 2.1419 0.3905 0.4500 26.0870
1.8226 8.97 21000 2.1317 0.3905 0.4439 26.7559
1.813 9.39 22000 2.1285 0.3895 0.4407 26.0870
1.7472 9.82 23000 2.1253 0.3884 0.4405 27.0903

Framework versions

  • Transformers 4.28.0
  • Pytorch 1.13.1+cu116
  • Datasets 2.14.4
  • Tokenizers 0.13.3