zebans's picture
update model card README.md
aac276d
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- rotten_tomatoes_movie_review
metrics:
- accuracy
- f1
model-index:
- name: bert-base-cased-finetuned-rotten-tomatoes-epochs-2
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: rotten_tomatoes_movie_review
type: rotten_tomatoes_movie_review
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.9671669793621013
- name: F1
type: f1
value: 0.9671667193207707
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# bert-base-cased-finetuned-rotten-tomatoes-epochs-2
This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the rotten_tomatoes_movie_review dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1393
- Accuracy: 0.9672
- F1: 0.9672
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 2
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|
| 0.3186 | 1.0 | 34 | 0.1948 | 0.9484 | 0.9484 |
| 0.1837 | 2.0 | 68 | 0.1393 | 0.9672 | 0.9672 |
### Framework versions
- Transformers 4.16.2
- Pytorch 2.1.0+cu121
- Datasets 1.16.1
- Tokenizers 0.15.0