|
--- |
|
language: |
|
- eu |
|
license: apache-2.0 |
|
base_model: openai/whisper-small |
|
tags: |
|
- whisper-event |
|
- generated_from_trainer |
|
datasets: |
|
- mozilla-foundation/common_voice_16_1 |
|
metrics: |
|
- wer |
|
model-index: |
|
- name: Whisper Small Basque |
|
results: |
|
- task: |
|
name: Automatic Speech Recognition |
|
type: automatic-speech-recognition |
|
dataset: |
|
name: mozilla-foundation/common_voice_16_1 eu |
|
type: mozilla-foundation/common_voice_16_1 |
|
config: eu |
|
split: test |
|
args: eu |
|
metrics: |
|
- name: Wer |
|
type: wer |
|
value: 12.73741597623886 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# Whisper Small Basque |
|
|
|
This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the mozilla-foundation/common_voice_16_1 eu dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.3785 |
|
- Wer: 12.7374 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 1e-05 |
|
- train_batch_size: 64 |
|
- eval_batch_size: 32 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 4 |
|
- total_train_batch_size: 256 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_steps: 500 |
|
- training_steps: 40000 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Wer | |
|
|:-------------:|:------:|:-----:|:---------------:|:-------:| |
|
| 0.0153 | 10.03 | 1000 | 0.2690 | 15.3119 | |
|
| 0.0029 | 20.05 | 2000 | 0.3132 | 15.0334 | |
|
| 0.0018 | 30.08 | 3000 | 0.3312 | 14.6113 | |
|
| 0.0009 | 40.1 | 4000 | 0.3375 | 14.0916 | |
|
| 0.0037 | 50.13 | 5000 | 0.3306 | 14.3241 | |
|
| 0.0002 | 60.15 | 6000 | 0.3628 | 13.5464 | |
|
| 0.0001 | 70.18 | 7000 | 0.3804 | 13.4985 | |
|
| 0.0001 | 80.2 | 8000 | 0.3961 | 13.5298 | |
|
| 0.0 | 90.23 | 9000 | 0.4117 | 13.5650 | |
|
| 0.0 | 100.25 | 10000 | 0.4282 | 13.6246 | |
|
| 0.0001 | 110.28 | 11000 | 0.3542 | 13.0061 | |
|
| 0.0001 | 120.3 | 12000 | 0.3697 | 13.1282 | |
|
| 0.0 | 130.33 | 13000 | 0.3874 | 12.9934 | |
|
| 0.0 | 140.35 | 14000 | 0.4002 | 12.9582 | |
|
| 0.0 | 150.38 | 15000 | 0.4120 | 12.9455 | |
|
| 0.0 | 160.4 | 16000 | 0.4246 | 12.9631 | |
|
| 0.0 | 170.43 | 17000 | 0.4369 | 13.0071 | |
|
| 0.0 | 180.45 | 18000 | 0.4501 | 13.0364 | |
|
| 0.0 | 190.48 | 19000 | 0.4638 | 13.0374 | |
|
| 0.0 | 200.5 | 20000 | 0.4786 | 13.0891 | |
|
| 0.0001 | 210.53 | 21000 | 0.3785 | 12.7374 | |
|
| 0.0 | 220.55 | 22000 | 0.4097 | 12.8166 | |
|
| 0.0 | 230.58 | 23000 | 0.4236 | 12.8175 | |
|
| 0.0 | 240.6 | 24000 | 0.4340 | 12.8039 | |
|
| 0.0 | 250.63 | 25000 | 0.4431 | 12.8156 | |
|
| 0.0 | 260.65 | 26000 | 0.4517 | 12.8058 | |
|
| 0.0 | 270.68 | 27000 | 0.4601 | 12.7921 | |
|
| 0.0 | 280.7 | 28000 | 0.4689 | 12.8029 | |
|
| 0.0 | 290.73 | 29000 | 0.4774 | 12.8039 | |
|
| 0.0 | 300.75 | 30000 | 0.4863 | 12.7960 | |
|
| 0.0 | 310.78 | 31000 | 0.4949 | 12.7912 | |
|
| 0.0 | 320.8 | 32000 | 0.5037 | 12.8107 | |
|
| 0.0 | 330.83 | 33000 | 0.5115 | 12.8087 | |
|
| 0.0 | 340.85 | 34000 | 0.5191 | 12.8293 | |
|
| 0.0 | 350.88 | 35000 | 0.5256 | 12.8918 | |
|
| 0.0 | 360.9 | 36000 | 0.5313 | 12.8810 | |
|
| 0.0 | 370.93 | 37000 | 0.5361 | 12.9045 | |
|
| 0.0 | 380.95 | 38000 | 0.5394 | 12.8996 | |
|
| 0.0 | 390.98 | 39000 | 0.5417 | 12.9123 | |
|
| 0.0 | 401.0 | 40000 | 0.5425 | 12.9123 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.37.2 |
|
- Pytorch 2.2.0+cu121 |
|
- Datasets 2.16.1 |
|
- Tokenizers 0.15.1 |
|
|