|
--- |
|
language: |
|
- ja |
|
license: cc-by-sa-4.0 |
|
tags: |
|
- zero-shot-classification |
|
- text-classification |
|
- nli |
|
- pytorch |
|
metrics: |
|
- accuracy |
|
datasets: |
|
- JSNLI |
|
pipeline_tag: text-classification |
|
widget: |
|
- text: "あなたが好きです。 あなたを愛しています。" |
|
model-index: |
|
- name: bert-base-japanese-jsnli |
|
results: |
|
- task: |
|
type: text-classification |
|
name: Natural Language Inference |
|
dataset: |
|
type: snli |
|
name: JSNLI |
|
split: dev |
|
metrics: |
|
- type: accuracy |
|
value: 0.9288 |
|
verified: false |
|
--- |
|
# bert-base-japanese-jsnli |
|
|
|
This model is a fine-tuned version of [cl-tohoku/bert-base-japanese-v2](https://huggingface.co/cl-tohoku/bert-base-japanese-v2) on the [JSNLI](https://nlp.ist.i.kyoto-u.ac.jp/?%E6%97%A5%E6%9C%AC%E8%AA%9ESNLI%28JSNLI%29%E3%83%87%E3%83%BC%E3%82%BF%E3%82%BB%E3%83%83%E3%83%88) dataset. |
|
It achieves the following results on the evaluation set: |
|
|
|
- Loss: 0.2085 |
|
- Accuracy: 0.9288 |
|
|
|
### How to use the model |
|
#### Simple zero-shot classification pipeline |
|
```python |
|
from transformers import pipeline |
|
|
|
classifier = pipeline("zero-shot-classification", model="Formzu/bert-base-japanese-jsnli") |
|
|
|
sequence_to_classify = "いつか世界を見る。" |
|
candidate_labels = ['旅行', '料理', '踊り'] |
|
out = classifier(sequence_to_classify, candidate_labels, hypothesis_template="この例は{}です。") |
|
print(out) |
|
#{'sequence': 'いつか世界を見る。', |
|
# 'labels': ['旅行', '料理', '踊り'], |
|
# 'scores': [0.6758995652198792, 0.22110949456691742, 0.1029909998178482]} |
|
``` |
|
#### NLI use-case |
|
```python |
|
from transformers import AutoTokenizer, AutoModelForSequenceClassification |
|
import torch |
|
|
|
device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu") |
|
|
|
model_name = "Formzu/bert-base-japanese-jsnli" |
|
model = AutoModelForSequenceClassification.from_pretrained(model_name).to(device) |
|
tokenizer = AutoTokenizer.from_pretrained(model_name) |
|
|
|
premise = "いつか世界を見る。" |
|
label = '旅行' |
|
hypothesis = f'この例は{label}です。' |
|
|
|
input = tokenizer.encode(premise, hypothesis, return_tensors='pt').to(device) |
|
with torch.no_grad(): |
|
logits = model(input)["logits"][0] |
|
probs = logits.softmax(dim=-1) |
|
print(probs.cpu().numpy(), logits.cpu().numpy()) |
|
#[0.68940836 0.29482093 0.01577068] [ 1.7791482 0.92968255 -1.998533 ] |
|
``` |
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
|
|
- learning_rate: 2e-05 |
|
- train_batch_size: 32 |
|
- eval_batch_size: 32 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 3.0 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | |
|
| :-----------: | :---: | :---: | :-------------: | :------: | |
|
| 0.4054 | 1.0 | 16657 | 0.2141 | 0.9216 | |
|
| 0.3297 | 2.0 | 33314 | 0.2145 | 0.9236 | |
|
| 0.2645 | 3.0 | 49971 | 0.2085 | 0.9288 | |
|
|
|
### Framework versions |
|
|
|
- Transformers 4.21.2 |
|
- Pytorch 1.12.1+cu116 |
|
- Datasets 2.4.0 |
|
- Tokenizers 0.12.1 |
|
|