|
--- |
|
language: |
|
- de |
|
license: apache-2.0 |
|
base_model: openai/whisper-medium |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- wer |
|
model-index: |
|
- name: openai/whisper-medium |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# openai/whisper-medium |
|
|
|
This model is a fine-tuned version of [openai/whisper-medium](https://huggingface.co/openai/whisper-medium) on the Hanhpt23/GermanMed-full dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.8743 |
|
- Wer: 26.2573 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 0.0001 |
|
- train_batch_size: 8 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_steps: 100 |
|
- num_epochs: 20 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Wer | |
|
|:-------------:|:-----:|:----:|:---------------:|:-------:| |
|
| 0.7043 | 1.0 | 194 | 0.7433 | 43.3508 | |
|
| 0.4383 | 2.0 | 388 | 0.7578 | 37.6118 | |
|
| 0.28 | 3.0 | 582 | 0.8223 | 39.6380 | |
|
| 0.188 | 4.0 | 776 | 0.8428 | 35.1538 | |
|
| 0.1479 | 5.0 | 970 | 0.8755 | 32.6751 | |
|
| 0.1263 | 6.0 | 1164 | 0.8562 | 31.2249 | |
|
| 0.0808 | 7.0 | 1358 | 0.8797 | 31.5129 | |
|
| 0.063 | 8.0 | 1552 | 0.9294 | 33.3333 | |
|
| 0.0469 | 9.0 | 1746 | 0.9285 | 35.4315 | |
|
| 0.0464 | 10.0 | 1940 | 0.9110 | 29.5176 | |
|
| 0.0302 | 11.0 | 2134 | 0.9158 | 33.4568 | |
|
| 0.0355 | 12.0 | 2328 | 0.9420 | 31.9243 | |
|
| 0.0167 | 13.0 | 2522 | 0.9098 | 30.6284 | |
|
| 0.0119 | 14.0 | 2716 | 0.8894 | 29.7645 | |
|
| 0.0092 | 15.0 | 2910 | 0.8861 | 26.9567 | |
|
| 0.0034 | 16.0 | 3104 | 0.8764 | 26.9670 | |
|
| 0.0007 | 17.0 | 3298 | 0.8692 | 26.2573 | |
|
| 0.0007 | 18.0 | 3492 | 0.8724 | 26.6584 | |
|
| 0.0002 | 19.0 | 3686 | 0.8739 | 26.2265 | |
|
| 0.0002 | 20.0 | 3880 | 0.8743 | 26.2573 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.41.1 |
|
- Pytorch 2.3.0 |
|
- Datasets 2.19.1 |
|
- Tokenizers 0.19.1 |
|
|