MENG21's picture
End of training
03f1d01 verified
metadata
license: apache-2.0
base_model: bert-large-uncased
tags:
  - generated_from_trainer
metrics:
  - accuracy
  - precision
  - recall
  - f1
model-index:
  - name: results_bert-large-uncased
    results: []

results_bert-large-uncased

This model is a fine-tuned version of bert-large-uncased on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2128
  • Accuracy: 0.9141
  • Precision: 0.9182
  • Recall: 0.9421
  • F1: 0.9300

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 1

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Recall F1
0.6415 0.09 50 0.5315 0.7175 0.6981 0.9394 0.8010
0.4007 0.18 100 0.7702 0.7243 0.9892 0.5505 0.7074
0.5158 0.28 150 0.4075 0.8591 0.8904 0.8748 0.8825
0.3934 0.37 200 0.2809 0.8763 0.9354 0.8546 0.8932
0.2691 0.46 250 0.3406 0.8832 0.8837 0.9294 0.9060
0.2814 0.55 300 0.2582 0.8768 0.8512 0.9651 0.9046
0.2735 0.64 350 0.2715 0.8953 0.8708 0.9711 0.9182
0.2411 0.74 400 0.2389 0.9103 0.9242 0.9279 0.9260
0.2371 0.83 450 0.2081 0.9104 0.9212 0.9316 0.9264
0.1974 0.92 500 0.2128 0.9141 0.9182 0.9421 0.9300

Framework versions

  • Transformers 4.37.2
  • Pytorch 2.1.0+cu121
  • Datasets 2.17.0
  • Tokenizers 0.15.2