|
--- |
|
license: apache-2.0 |
|
base_model: bert-large-uncased |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- accuracy |
|
- precision |
|
- recall |
|
- f1 |
|
model-index: |
|
- name: results_bert-large-uncased |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# results_bert-large-uncased |
|
|
|
This model is a fine-tuned version of [bert-large-uncased](https://huggingface.co/bert-large-uncased) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.2128 |
|
- Accuracy: 0.9141 |
|
- Precision: 0.9182 |
|
- Recall: 0.9421 |
|
- F1: 0.9300 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5e-05 |
|
- train_batch_size: 32 |
|
- eval_batch_size: 32 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_ratio: 0.1 |
|
- num_epochs: 1 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |
|
|:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:| |
|
| 0.6415 | 0.09 | 50 | 0.5315 | 0.7175 | 0.6981 | 0.9394 | 0.8010 | |
|
| 0.4007 | 0.18 | 100 | 0.7702 | 0.7243 | 0.9892 | 0.5505 | 0.7074 | |
|
| 0.5158 | 0.28 | 150 | 0.4075 | 0.8591 | 0.8904 | 0.8748 | 0.8825 | |
|
| 0.3934 | 0.37 | 200 | 0.2809 | 0.8763 | 0.9354 | 0.8546 | 0.8932 | |
|
| 0.2691 | 0.46 | 250 | 0.3406 | 0.8832 | 0.8837 | 0.9294 | 0.9060 | |
|
| 0.2814 | 0.55 | 300 | 0.2582 | 0.8768 | 0.8512 | 0.9651 | 0.9046 | |
|
| 0.2735 | 0.64 | 350 | 0.2715 | 0.8953 | 0.8708 | 0.9711 | 0.9182 | |
|
| 0.2411 | 0.74 | 400 | 0.2389 | 0.9103 | 0.9242 | 0.9279 | 0.9260 | |
|
| 0.2371 | 0.83 | 450 | 0.2081 | 0.9104 | 0.9212 | 0.9316 | 0.9264 | |
|
| 0.1974 | 0.92 | 500 | 0.2128 | 0.9141 | 0.9182 | 0.9421 | 0.9300 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.37.2 |
|
- Pytorch 2.1.0+cu121 |
|
- Datasets 2.17.0 |
|
- Tokenizers 0.15.2 |
|
|