File size: 10,215 Bytes
fced307
16c3ce8
fced307
16c3ce8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fced307
16c3ce8
 
 
 
 
 
 
 
 
 
 
 
 
 
62538ea
 
16c3ce8
abb8bf0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
58907ca
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a812b89
 
 
 
04f0190
a812b89
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
04f0190
86f62fd
a812b89
04f0190
 
 
86f62fd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
04f0190
 
 
 
 
 
 
 
 
 
86f62fd
 
04f0190
 
a812b89
 
86f62fd
 
 
 
 
 
 
 
 
 
a812b89
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
86f62fd
a812b89
 
 
 
 
 
 
 
 
 
04f0190
70f3968
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a812b89
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
import os
import random
import shutil
from concurrent.futures import ThreadPoolExecutor

# Define paths
dataset_folder = 'path/to/dataset'
train_folder = os.path.join(dataset_folder, 'train')
val_folder = os.path.join(dataset_folder, 'validation')

# Create validation folder if it doesn't exist
os.makedirs(val_folder, exist_ok=True)

# Get all label folders inside train folder
label_folders = [f for f in os.listdir(train_folder) if os.path.isdir(os.path.join(train_folder, f))]

# Function to move images from a specific label folder
def process_label_folder(label_folder, num_threads):
    train_label_folder = os.path.join(train_folder, label_folder)
    val_label_folder = os.path.join(val_folder, label_folder)

    # Create corresponding validation label folder
    os.makedirs(val_label_folder, exist_ok=True)

    # Get all images in the train/label_folder
    all_images = os.listdir(train_label_folder)
    total_images = len(all_images)

    # Calculate 20% of images for validation
    val_size = int(total_images * 0.2)

    # Randomly select 20% of the images for validation
    val_images = random.sample(all_images, val_size)

    # Function to move a single image
    def move_image(image):
        src = os.path.join(train_label_folder, image)
        dest = os.path.join(val_label_folder, image)
        shutil.move(src, dest)

    # Use ThreadPoolExecutor to move images in parallel
    with ThreadPoolExecutor(max_workers=num_threads) as executor:
        executor.map(move_image, val_images)

    print(f"Moved {val_size} images from {label_folder} to validation folder.")

# Main function to get user input for number of threads and process folders
def main():
    # Ask user for the number of threads
    num_threads = int(input("Enter the number of threads to use: "))

    # Process each label folder using the input number of threads
    for label_folder in label_folders:
        process_label_folder(label_folder, num_threads)

    print("Validation dataset created.")

if __name__ == "__main__":
    main()


import numpy as np
from sklearn.metrics import confusion_matrix, precision_score, recall_score, f1_score, accuracy_score

# Assuming you have true labels and predicted labels
y_true = [0, 1, 2, 1, 0, 1, 2, 2, 0]  # Replace with your true labels
y_pred = [0, 0, 2, 1, 0, 1, 2, 1, 0]  # Replace with your predicted labels

# Calculate the confusion matrix
conf_matrix = confusion_matrix(y_true, y_pred)

# Print the confusion matrix
print("Confusion Matrix:")
print(conf_matrix)

# Calculate precision, recall, f1-score, and accuracy for each label
precision = precision_score(y_true, y_pred, average=None)
recall = recall_score(y_true, y_pred, average=None)
f1 = f1_score(y_true, y_pred, average=None)
accuracy = accuracy_score(y_true, y_pred)

# Print precision, recall, f1-score for each label
for i in range(len(precision)):
    print(f"Label {i}:")
    print(f"  Precision: {precision[i]:.4f}")
    print(f"  Recall: {recall[i]:.4f}")
    print(f"  F1-Score: {f1[i]:.4f}")
    print()

# Print overall accuracy
print(f"Overall Accuracy: {accuracy:.4f}")


import numpy as np
from sklearn.metrics import confusion_matrix

# Example true and predicted labels
y_true = [0, 1, 2, 1, 0, 1, 2, 2, 0]  # Replace with your true labels
y_pred = [0, 0, 2, 1, 0, 1, 2, 1, 0]  # Replace with your predicted labels

# Class names (replace with your actual labels)
label_names = ['Class A', 'Class B', 'Class C']

# Calculate the confusion matrix
conf_matrix = confusion_matrix(y_true, y_pred)

# Print the confusion matrix
print("Confusion Matrix:")
print(conf_matrix)

# Number of classes
num_classes = conf_matrix.shape[0]

# Initialize lists for precision, recall, and f1-score
precision = []
recall = []
f1_score = []

# Calculate precision, recall, and F1-score from confusion matrix for each class
for i in range(num_classes):
    tp = conf_matrix[i, i]  # True Positives
    fp = np.sum(conf_matrix[:, i]) - tp  # False Positives
    fn = np.sum(conf_matrix[i, :]) - tp  # False Negatives
    
    # Calculate precision, recall, f1-score
    precision_i = tp / (tp + fp) if (tp + fp) > 0 else 0
    recall_i = tp / (tp + fn) if (tp + fn) > 0 else 0
    f1_i = 2 * (precision_i * recall_i) / (precision_i + recall_i) if (precision_i + recall_i) > 0 else 0
    
    # Append to lists
    precision.append(precision_i)
    recall.append(recall_i)
    f1_score.append(f1_i)

# Print precision, recall, f1-score for each label
for i, label in enumerate(label_names):
    print(f"{label}:")
    print(f"  Precision: {precision[i]:.4f}")
    print(f"  Recall: {recall[i]:.4f}")
    print(f"  F1-Score: {f1_score[i]:.4f}")
    print()


import React, { useState, useEffect } from "react";
import * as tflite from "@tensorflow/tfjs-tflite";
import * as tf from "@tensorflow/tfjs";

function ObjectDetector() {
  const [model, setModel] = useState(null);
  const [imageUrl, setImageUrl] = useState(null);
  const [predictions, setPredictions] = useState([]);

  // Load the TFLite model
  useEffect(() => {
    const loadModel = async () => {
      const loadedModel = await tflite.loadTFLiteModel('/path_to_your_model.tflite');
      setModel(loadedModel);
    };

    loadModel();
  }, []);

  // Handle image input change
  const handleImageChange = (event) => {
    const file = event.target.files[0];
    if (file) {
      setImageUrl(URL.createObjectURL(file));
    }
  };

  // Run inference on the selected image
  const runInference = async () => {
    if (!model || !imageUrl) return;

    const imageElement = document.getElementById("inputImage");

    // Load the image into a tensor
    const inputTensor = preprocessImage(imageElement, [1, 320, 320, 3]);  // Adjust this size based on your model's expected input

    // Run inference
    const output = await model.predict(inputTensor);

    // Extract predictions
    const [boxes, classes, scores, numDetections] = extractPredictions(output);

    // Display the predictions
    const predictionResults = [];
    for (let i = 0; i < numDetections; i++) {
      if (scores[i] > 0.5) { // Only display results with confidence > 0.5
        predictionResults.push({
          class: classes[i],  // Map class ID to label if available
          score: scores[i],
          bbox: boxes[i],
        });
      }
    }
    setPredictions(predictionResults);

    // Clean up the tensor to free memory
    tf.dispose([inputTensor]);
  };

  // Function to preprocess image (resize, normalize, and convert to tensor)
  const preprocessImage = (image, inputShape) => {
    const tensor = tf.browser.fromPixels(image)   // Load image into a tensor
      .toFloat()
      .div(tf.scalar(255.0))  // Normalize pixel values to [0, 1]
      .resizeBilinear([inputShape[1], inputShape[2]])  // Resize to 320x320 or model input size
      .expandDims(0);  // Add batch dimension [1, 320, 320, 3]

    return tensor;
  };

  // Function to extract bounding boxes, class IDs, and scores from the model output
  const extractPredictions = (output) => {
    const boxes = output[0].arraySync();    // Bounding boxes
    const classes = output[1].arraySync();  // Class IDs
    const scores = output[2].arraySync();   // Confidence scores
    const numDetections = output[3].arraySync()[0];  // Number of detected objects

    return [boxes, classes, scores, numDetections];
  };

  return (
    <div>
      <h1>Object Detection with TFLite</h1>

      {/* Input: Upload Image */}
      <input type="file" accept="image/*" onChange={handleImageChange} />

      {/* Display Selected Image */}
      {imageUrl && (
        <div>
          <img id="inputImage" src={imageUrl} alt="Input" width="300px" />
        </div>
      )}

      {/* Run Inference Button */}
      <button onClick={runInference} disabled={!model}>
        Run Inference
      </button>

      {/* Display Predictions */}
      {predictions.length > 0 && (
        <div>
          <h2>Predictions:</h2>
          <ul>
            {predictions.map((pred, index) => (
              <li key={index}>
                {`Class: ${pred.class}, Confidence: ${pred.score.toFixed(2)}, Bounding Box: [${pred.bbox}]`}
              </li>
            ))}
          </ul>
        </div>
      )}
    </div>
  );
}

export default ObjectDetector;



import json
import random
import os

# Load the COCO annotations file
coco_file = 'annotations.json'  # Path to your COCO annotations file
output_dir = 'output_dir/'  # Directory to save the split files
train_ratio = 0.8  # 80% for training, 20% for validation

# Create output directory if it doesn't exist
if not os.path.exists(output_dir):
    os.makedirs(output_dir)

# Load COCO annotations
with open(coco_file, 'r') as f:
    coco_data = json.load(f)

# Extract images and annotations
images = coco_data['images']
annotations = coco_data['annotations']

# Shuffle images to ensure random split
random.shuffle(images)

# Split images into training and validation sets
train_size = int(len(images) * train_ratio)
train_images = images[:train_size]
val_images = images[train_size:]

# Create dictionaries to store image IDs for filtering annotations
train_image_ids = {img['id'] for img in train_images}
val_image_ids = {img['id'] for img in val_images}

# Split annotations based on image IDs
train_annotations = [ann for ann in annotations if ann['image_id'] in train_image_ids]
val_annotations = [ann for ann in annotations if ann['image_id'] in val_image_ids]

# Create train and validation splits for COCO format
train_data = {
    'images': train_images,
    'annotations': train_annotations,
    'categories': coco_data['categories'],  # Keep categories the same
}

val_data = {
    'images': val_images,
    'annotations': val_annotations,
    'categories': coco_data['categories'],  # Keep categories the same
}

# Save the new train and validation annotation files
train_file = os.path.join(output_dir, 'train_annotations.json')
val_file = os.path.join(output_dir, 'val_annotations.json')

with open(train_file, 'w') as f:
    json.dump(train_data, f)

with open(val_file, 'w') as f:
    json.dump(val_data, f)

print(f"Train annotations saved to: {train_file}")
print(f"Validation annotations saved to: {val_file}")