metadata
library_name: transformers
model_name: Vikhr-Qwen-2.5-1.5B-Instruct
base_model: Vikhrmodels/Vikhr-Qwen-2.5-1.5B-Instruct
language:
- ru
- en
license: apache-2.0
datasets:
- Vikhrmodels/GrandMaster-PRO-MAX
tags:
- mlx
Vikhrmodels/Vikhr-Qwen-2.5-1.5B-Instruct-MLX_4bit
The Model Vikhrmodels/Vikhr-Qwen-2.5-1.5B-Instruct-MLX_4bit was converted to MLX format from Vikhrmodels/Vikhr-Qwen-2.5-1.5B-Instruct using mlx-lm version 0.20.1.
Use with mlx
pip install mlx-lm
from mlx_lm import load, generate
model, tokenizer = load("Vikhrmodels/Vikhr-Qwen-2.5-1.5B-Instruct-MLX_4bit")
prompt="hello"
if hasattr(tokenizer, "apply_chat_template") and tokenizer.chat_template is not None:
messages = [{"role": "user", "content": prompt}]
prompt = tokenizer.apply_chat_template(
messages, tokenize=False, add_generation_prompt=True
)
response = generate(model, tokenizer, prompt=prompt, verbose=True)