WaveCut's picture
d7096defdb9b3e0fab080859f1ddbe944ac80785f55fae8c398d2023923abaea
2dea08e verified
|
raw
history blame
1.1 kB
metadata
library_name: transformers
model_name: Vikhr-Qwen-2.5-1.5B-Instruct
base_model: Vikhrmodels/Vikhr-Qwen-2.5-1.5B-Instruct
language:
  - ru
  - en
license: apache-2.0
datasets:
  - Vikhrmodels/GrandMaster-PRO-MAX
tags:
  - mlx

Vikhrmodels/Vikhr-Qwen-2.5-1.5B-Instruct-MLX_4bit

The Model Vikhrmodels/Vikhr-Qwen-2.5-1.5B-Instruct-MLX_4bit was converted to MLX format from Vikhrmodels/Vikhr-Qwen-2.5-1.5B-Instruct using mlx-lm version 0.20.1.

Use with mlx

pip install mlx-lm
from mlx_lm import load, generate

model, tokenizer = load("Vikhrmodels/Vikhr-Qwen-2.5-1.5B-Instruct-MLX_4bit")

prompt="hello"

if hasattr(tokenizer, "apply_chat_template") and tokenizer.chat_template is not None:
    messages = [{"role": "user", "content": prompt}]
    prompt = tokenizer.apply_chat_template(
        messages, tokenize=False, add_generation_prompt=True
    )

response = generate(model, tokenizer, prompt=prompt, verbose=True)