WaveCut's picture
d7096defdb9b3e0fab080859f1ddbe944ac80785f55fae8c398d2023923abaea
2dea08e verified
|
raw
history blame
1.1 kB
---
library_name: transformers
model_name: Vikhr-Qwen-2.5-1.5B-Instruct
base_model: Vikhrmodels/Vikhr-Qwen-2.5-1.5B-Instruct
language:
- ru
- en
license: apache-2.0
datasets:
- Vikhrmodels/GrandMaster-PRO-MAX
tags:
- mlx
---
# Vikhrmodels/Vikhr-Qwen-2.5-1.5B-Instruct-MLX_4bit
The Model [Vikhrmodels/Vikhr-Qwen-2.5-1.5B-Instruct-MLX_4bit](https://huggingface.co/Vikhrmodels/Vikhr-Qwen-2.5-1.5B-Instruct-MLX_4bit) was
converted to MLX format from [Vikhrmodels/Vikhr-Qwen-2.5-1.5B-Instruct](https://huggingface.co/Vikhrmodels/Vikhr-Qwen-2.5-1.5B-Instruct)
using mlx-lm version **0.20.1**.
## Use with mlx
```bash
pip install mlx-lm
```
```python
from mlx_lm import load, generate
model, tokenizer = load("Vikhrmodels/Vikhr-Qwen-2.5-1.5B-Instruct-MLX_4bit")
prompt="hello"
if hasattr(tokenizer, "apply_chat_template") and tokenizer.chat_template is not None:
messages = [{"role": "user", "content": prompt}]
prompt = tokenizer.apply_chat_template(
messages, tokenize=False, add_generation_prompt=True
)
response = generate(model, tokenizer, prompt=prompt, verbose=True)
```