abelkrw's picture
End of training
3243c03
|
raw
history blame
2.99 kB
metadata
license: apache-2.0
base_model: google/vit-base-patch16-224-in21k
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: emotion_classification
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: train
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.59375

emotion_classification

This model is a fine-tuned version of google/vit-base-patch16-224-in21k on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 1.1554
  • Accuracy: 0.5938

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 64
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Accuracy
1.2477 1.0 10 1.3618 0.5625
1.2002 2.0 20 1.3367 0.5625
1.111 3.0 30 1.3178 0.5312
1.0286 4.0 40 1.2215 0.5625
0.9376 5.0 50 1.2117 0.5437
0.8948 6.0 60 1.2304 0.5625
0.8234 7.0 70 1.1634 0.5563
0.8069 8.0 80 1.2422 0.5563
0.7146 9.0 90 1.2053 0.5563
0.709 10.0 100 1.1887 0.575
0.6404 11.0 110 1.2208 0.5563
0.6301 12.0 120 1.2319 0.5687
0.6107 13.0 130 1.1684 0.6
0.5825 14.0 140 1.1837 0.5813
0.5454 15.0 150 1.1818 0.5687
0.5517 16.0 160 1.1974 0.55
0.4989 17.0 170 1.1304 0.6
0.4875 18.0 180 1.2277 0.5375
0.4881 19.0 190 1.1363 0.5875
0.4951 20.0 200 1.1540 0.6062

Framework versions

  • Transformers 4.33.2
  • Pytorch 2.0.1+cu118
  • Datasets 2.14.5
  • Tokenizers 0.13.3