alyzbane's picture
End of training
229def0 verified
|
raw
history blame
2.93 kB
---
library_name: transformers
license: apache-2.0
base_model: microsoft/beit-base-patch16-224-pt22k-ft22k
tags:
- generated_from_trainer
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: beit-base-patch16-224-pt22k-ft22k-finetuned-barkley
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# beit-base-patch16-224-pt22k-ft22k-finetuned-barkley
This model is a fine-tuned version of [microsoft/beit-base-patch16-224-pt22k-ft22k](https://huggingface.co/microsoft/beit-base-patch16-224-pt22k-ft22k) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0079
- Precision: 1.0
- Recall: 1.0
- F1: 1.0
- Accuracy: 1.0
- Top1 Accuracy: 1.0
- Error Rate: 0.0
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 30
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | Top1 Accuracy | Error Rate |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|:-------------:|:----------:|
| 1.5547 | 1.0 | 38 | 1.4018 | 0.5683 | 0.4539 | 0.4240 | 0.4728 | 0.4539 | 0.5272 |
| 1.1732 | 2.0 | 76 | 0.9193 | 0.8095 | 0.7961 | 0.7985 | 0.8077 | 0.7961 | 0.1923 |
| 0.6764 | 3.0 | 114 | 0.3644 | 0.9488 | 0.9474 | 0.9470 | 0.9483 | 0.9474 | 0.0517 |
| 0.2566 | 4.0 | 152 | 0.0871 | 0.9937 | 0.9934 | 0.9934 | 0.9944 | 0.9934 | 0.0056 |
| 0.1014 | 5.0 | 190 | 0.0533 | 0.9809 | 0.9803 | 0.9802 | 0.9811 | 0.9803 | 0.0189 |
| 0.0538 | 6.0 | 228 | 0.0208 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 0.0 |
| 0.0304 | 7.0 | 266 | 0.0079 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 0.0 |
| 0.0571 | 8.0 | 304 | 0.0088 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 0.0 |
| 0.0608 | 9.0 | 342 | 0.0226 | 0.9936 | 0.9934 | 0.9934 | 0.9933 | 0.9934 | 0.0067 |
### Framework versions
- Transformers 4.44.2
- Pytorch 2.3.1+cu121
- Datasets 3.0.1
- Tokenizers 0.19.1