metadata
library_name: transformers
license: mit
base_model: cardiffnlp/twitter-roberta-large-hate-latest
tags:
- generated_from_trainer
metrics:
- accuracy
- precision
- recall
- f1
model-index:
- name: twitter-roberta-large-hate-latest-roman-urdu-fine-grained
results: []
twitter-roberta-large-hate-latest-roman-urdu-fine-grained
This model is a fine-tuned version of cardiffnlp/twitter-roberta-large-hate-latest on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.8408
- Accuracy: 0.8023
- Precision: 0.7245
- Recall: 0.7129
- F1: 0.7177
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 128
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 |
---|---|---|---|---|---|---|---|
0.9091 | 1.0 | 113 | 0.8078 | 0.7034 | 0.3788 | 0.4083 | 0.3878 |
1.1008 | 2.0 | 226 | 0.9036 | 0.6510 | 0.2624 | 0.3397 | 0.2841 |
0.7624 | 3.0 | 339 | 0.6444 | 0.7844 | 0.7015 | 0.6274 | 0.6544 |
0.5512 | 4.0 | 452 | 0.5075 | 0.8342 | 0.7675 | 0.7453 | 0.7463 |
0.5258 | 5.0 | 565 | 0.3519 | 0.8858 | 0.8263 | 0.8081 | 0.8163 |
0.3489 | 6.0 | 678 | 0.3154 | 0.9011 | 0.8612 | 0.8260 | 0.8399 |
0.3182 | 7.0 | 791 | 0.2394 | 0.9295 | 0.8985 | 0.8864 | 0.8895 |
0.2263 | 8.0 | 904 | 0.1722 | 0.9502 | 0.9092 | 0.9223 | 0.9143 |
0.2024 | 9.0 | 1017 | 0.1252 | 0.9684 | 0.9474 | 0.9441 | 0.9457 |
0.1757 | 10.0 | 1130 | 0.1101 | 0.9736 | 0.9592 | 0.9506 | 0.9548 |
Framework versions
- Transformers 4.45.1
- Pytorch 2.4.0
- Datasets 3.0.1
- Tokenizers 0.20.0