|
--- |
|
library_name: transformers |
|
license: mit |
|
base_model: cardiffnlp/twitter-roberta-large-hate-latest |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- accuracy |
|
- precision |
|
- recall |
|
- f1 |
|
model-index: |
|
- name: twitter-roberta-large-hate-latest-roman-urdu-fine-grained |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# twitter-roberta-large-hate-latest-roman-urdu-fine-grained |
|
|
|
This model is a fine-tuned version of [cardiffnlp/twitter-roberta-large-hate-latest](https://huggingface.co/cardiffnlp/twitter-roberta-large-hate-latest) on the None dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.8408 |
|
- Accuracy: 0.8023 |
|
- Precision: 0.7245 |
|
- Recall: 0.7129 |
|
- F1: 0.7177 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5e-05 |
|
- train_batch_size: 32 |
|
- eval_batch_size: 128 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 2 |
|
- total_train_batch_size: 64 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 10 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |
|
|:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:| |
|
| 0.9091 | 1.0 | 113 | 0.8078 | 0.7034 | 0.3788 | 0.4083 | 0.3878 | |
|
| 1.1008 | 2.0 | 226 | 0.9036 | 0.6510 | 0.2624 | 0.3397 | 0.2841 | |
|
| 0.7624 | 3.0 | 339 | 0.6444 | 0.7844 | 0.7015 | 0.6274 | 0.6544 | |
|
| 0.5512 | 4.0 | 452 | 0.5075 | 0.8342 | 0.7675 | 0.7453 | 0.7463 | |
|
| 0.5258 | 5.0 | 565 | 0.3519 | 0.8858 | 0.8263 | 0.8081 | 0.8163 | |
|
| 0.3489 | 6.0 | 678 | 0.3154 | 0.9011 | 0.8612 | 0.8260 | 0.8399 | |
|
| 0.3182 | 7.0 | 791 | 0.2394 | 0.9295 | 0.8985 | 0.8864 | 0.8895 | |
|
| 0.2263 | 8.0 | 904 | 0.1722 | 0.9502 | 0.9092 | 0.9223 | 0.9143 | |
|
| 0.2024 | 9.0 | 1017 | 0.1252 | 0.9684 | 0.9474 | 0.9441 | 0.9457 | |
|
| 0.1757 | 10.0 | 1130 | 0.1101 | 0.9736 | 0.9592 | 0.9506 | 0.9548 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.45.1 |
|
- Pytorch 2.4.0 |
|
- Datasets 3.0.1 |
|
- Tokenizers 0.20.0 |
|
|