File size: 5,196 Bytes
d7b3c38 93f39a5 dde9150 93f39a5 99968d8 0cc84da 69b326a 708ec90 a76ba54 69b326a 308b959 b450020 d2c8b8c 271c4c4 25e2a05 271c4c4 25e2a05 271c4c4 a6a588c 271c4c4 d3f8524 271c4c4 1fc3b9c 69b326a 1fc3b9c 4d0cd0d d17168a 69b326a 1fc3b9c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 |
import sys
from pathlib import Path
import os
import importlib
import shutil
import time
import yaml
import os
def task_cohort(task,mimic_path,path_benchmark, config_path):
root_dir = os.path.dirname(os.path.abspath('UserInterface.ipynb'))
config_path='./config/'+config_path
with open(config_path) as f:
config = yaml.safe_load(f)
version_path = mimic_path+'/'
version = mimic_path.split('/')[-1][0]
start = time.time()
#----------------------------------------------config----------------------------------------------------
disease_label = config['disease_label']
tim = config['time']
label = config['label']
timeW = config['timeW']
include=int(timeW.split()[1])
bucket = config['bucket']
radimp = config['radimp']
predW = config['predW']
diag_flag = config['diagnosis']
out_flag = config['output']
chart_flag = config['chart']
proc_flag= config['proc']
med_flag = config['meds']
disease_filter = config['disease_filter']
icu_no_icu = config['icu_no_icu']
groupingICD = config['groupingICD']
# -------------------------------------------------------------------------------------------------------------
data_icu=icu_no_icu=="ICU"
data_mort=label=="Mortality"
data_admn=label=='Readmission'
data_los=label=='Length of Stay'
if (disease_filter=="Heart Failure"):
icd_code='I50'
elif (disease_filter=="CKD"):
icd_code='N18'
elif (disease_filter=="COPD"):
icd_code='J44'
elif (disease_filter=="CAD"):
icd_code='I25'
else:
icd_code='No Disease Filter'
#-----------------------------------------------EXTRACT MIMIC-----------------------------------------------------
if version == '2':
cohort_output = day_intervals_cohort_v22.extract_data(icu_no_icu,label,tim,icd_code, root_dir,version_path,disease_label)
elif version == '1':
cohort_output = day_intervals_cohort.extract_data(icu_no_icu,label,tim,icd_code, root_dir,version_path,disease_label)
#----------------------------------------------FEATURES-------------------------------------------------------
if data_icu :
feature_selection_icu.feature_icu(cohort_output, version_path,diag_flag,out_flag,chart_flag,proc_flag,med_flag)
#----------------------------------------------GROUPING-------------------------------------------------------
group_diag=False
group_med=False
group_proc=False
if data_icu:
if diag_flag:
group_diag=groupingICD
feature_selection_icu.preprocess_features_icu(cohort_output, diag_flag, group_diag,False,False,False,0,0)
#----------------------------------------------SUMMARY-------------------------------------------------------
if data_icu:
feature_selection_icu.generate_summary_icu(diag_flag,proc_flag,med_flag,out_flag,chart_flag)
#----------------------------------------------FEATURE SELECTION---------------------------------------------
select_diag= config['select_diag']
select_med= config['select_med']
select_proc= config['select_proc']
#select_lab= config['select_lab']
select_out= config['select_out']
select_chart= config['select_chart']
feature_selection_icu.features_selection_icu(cohort_output, diag_flag,proc_flag,med_flag,out_flag, chart_flag,select_diag,select_med,select_proc,select_out,select_chart)
#---------------------------------------CLEANING OF FEATURES-----------------------------------------------
thresh=0
if data_icu:
if chart_flag:
outlier_removal=config['outlier_removal']
clean_chart=outlier_removal!='No outlier detection'
impute_outlier_chart=outlier_removal=='Impute Outlier (default:98)'
thresh=config['outlier']
left_thresh=config['left_outlier']
feature_selection_icu.preprocess_features_icu(cohort_output, False, False,chart_flag,clean_chart,impute_outlier_chart,thresh,left_thresh)
# ---------------------------------------tim-Series Representation--------------------------------------------
if radimp == 'forward fill and mean' :
impute='Mean'
elif radimp =='forward fill and median':
impute = 'Median'
else :
impute = False
if data_icu:
gen=data_generation_icu_modify.Generator(task,cohort_output,data_mort,data_admn,data_los,diag_flag,proc_flag,out_flag,chart_flag,med_flag,impute,include,bucket,predW)
end = time.time()
print("Time elapsed : ", round((end - start)/60,2),"mins")
print("[============TASK COHORT SUCCESSFULLY CREATED============]")
if __name__ == '__main__':
task = sys.argv[1]
mimic_path = sys.argv[2]
path_benchmark = sys.argv[3]
config = sys.argv[4]
sys.path.append('./preprocessing/day_intervals_preproc')
sys.path.append('./utils')
sys.path.append('./preprocessing/hosp_module_preproc')
sys.path.append('./model')
import day_intervals_cohort_v22
import day_intervals_cohort
import feature_selection_icu
import data_generation_icu_modify
task_cohort(task, mimic_path, path_benchmark, config) |