font-identifier / README.md
gaborcselle's picture
Training in progress, epoch 0
aa74db1
|
raw
history blame
2.94 kB
metadata
license: apache-2.0
base_model: microsoft/resnet-18
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: font-identifier
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: test
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.9102040816326531

font-identifier

This model is a fine-tuned version of microsoft/resnet-18 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3980
  • Accuracy: 0.9102

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 64
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Accuracy
3.9105 0.98 30 3.7931 0.0551
3.2821 1.98 61 2.9878 0.2755
2.4752 2.99 92 2.1760 0.4408
1.9958 4.0 123 1.6964 0.5327
1.6609 4.98 153 1.4001 0.6265
1.4328 5.98 184 1.1766 0.6796
1.2677 6.99 215 1.0262 0.7163
1.1174 8.0 246 0.8758 0.7653
1.0564 8.98 276 0.7675 0.8184
0.9003 9.98 307 0.7161 0.8286
0.8711 10.99 338 0.6461 0.8224
0.7954 12.0 369 0.5683 0.8653
0.743 12.98 399 0.5438 0.8510
0.6914 13.98 430 0.5129 0.8878
0.6714 14.99 461 0.4418 0.8857
0.663 16.0 492 0.4555 0.8694
0.6326 16.98 522 0.4746 0.8755
0.5831 17.98 553 0.4263 0.8776
0.571 18.99 584 0.4305 0.8857
0.6543 19.51 600 0.3980 0.9102

Framework versions

  • Transformers 4.36.0.dev0
  • Pytorch 2.0.0
  • Datasets 2.12.0
  • Tokenizers 0.14.1