|
--- |
|
license: apache-2.0 |
|
base_model: microsoft/resnet-18 |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- imagefolder |
|
metrics: |
|
- accuracy |
|
model-index: |
|
- name: font-identifier |
|
results: |
|
- task: |
|
name: Image Classification |
|
type: image-classification |
|
dataset: |
|
name: imagefolder |
|
type: imagefolder |
|
config: default |
|
split: test |
|
args: default |
|
metrics: |
|
- name: Accuracy |
|
type: accuracy |
|
value: 0.9102040816326531 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# font-identifier |
|
|
|
This model is a fine-tuned version of [microsoft/resnet-18](https://huggingface.co/microsoft/resnet-18) on the imagefolder dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.3980 |
|
- Accuracy: 0.9102 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5e-05 |
|
- train_batch_size: 16 |
|
- eval_batch_size: 16 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 4 |
|
- total_train_batch_size: 64 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_ratio: 0.1 |
|
- num_epochs: 20 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | |
|
|:-------------:|:-----:|:----:|:---------------:|:--------:| |
|
| 3.9105 | 0.98 | 30 | 3.7931 | 0.0551 | |
|
| 3.2821 | 1.98 | 61 | 2.9878 | 0.2755 | |
|
| 2.4752 | 2.99 | 92 | 2.1760 | 0.4408 | |
|
| 1.9958 | 4.0 | 123 | 1.6964 | 0.5327 | |
|
| 1.6609 | 4.98 | 153 | 1.4001 | 0.6265 | |
|
| 1.4328 | 5.98 | 184 | 1.1766 | 0.6796 | |
|
| 1.2677 | 6.99 | 215 | 1.0262 | 0.7163 | |
|
| 1.1174 | 8.0 | 246 | 0.8758 | 0.7653 | |
|
| 1.0564 | 8.98 | 276 | 0.7675 | 0.8184 | |
|
| 0.9003 | 9.98 | 307 | 0.7161 | 0.8286 | |
|
| 0.8711 | 10.99 | 338 | 0.6461 | 0.8224 | |
|
| 0.7954 | 12.0 | 369 | 0.5683 | 0.8653 | |
|
| 0.743 | 12.98 | 399 | 0.5438 | 0.8510 | |
|
| 0.6914 | 13.98 | 430 | 0.5129 | 0.8878 | |
|
| 0.6714 | 14.99 | 461 | 0.4418 | 0.8857 | |
|
| 0.663 | 16.0 | 492 | 0.4555 | 0.8694 | |
|
| 0.6326 | 16.98 | 522 | 0.4746 | 0.8755 | |
|
| 0.5831 | 17.98 | 553 | 0.4263 | 0.8776 | |
|
| 0.571 | 18.99 | 584 | 0.4305 | 0.8857 | |
|
| 0.6543 | 19.51 | 600 | 0.3980 | 0.9102 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.36.0.dev0 |
|
- Pytorch 2.0.0 |
|
- Datasets 2.12.0 |
|
- Tokenizers 0.14.1 |
|
|