milka1g's picture
End of training
e6af29e verified
|
raw
history blame
2.07 kB
metadata
library_name: transformers
license: mit
base_model: facebook/esm2_t33_650M_UR50D
tags:
  - generated_from_trainer
metrics:
  - accuracy
  - precision
  - recall
model-index:
  - name: esm2_t33_650M_UR50D-finetuned
    results: []

esm2_t33_650M_UR50D-finetuned

This model is a fine-tuned version of facebook/esm2_t33_650M_UR50D on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4409
  • Tp: 539
  • Tn: 617
  • Fp: 47
  • Fn: 93
  • Accuracy: 0.8920
  • Precision: 0.9198
  • Recall: 0.8528
  • F1-score: 0.8851
  • Auc: 0.8910
  • Mcc: 0.7854

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 3

Training results

Training Loss Epoch Step Validation Loss Tp Tn Fp Fn Accuracy Precision Recall F1-score Auc Mcc
0.393 1.0 1296 0.3616 507 615 49 125 0.8657 0.9119 0.8022 0.8535 0.8642 0.7356
0.3052 2.0 2592 0.3159 536 608 56 96 0.8827 0.9054 0.8481 0.8758 0.8819 0.7664
0.166 3.0 3888 0.4409 539 617 47 93 0.8920 0.9198 0.8528 0.8851 0.8910 0.7854

Framework versions

  • Transformers 4.45.2
  • Pytorch 1.13.1+cu117
  • Datasets 3.0.1
  • Tokenizers 0.20.1