|
--- |
|
library_name: transformers |
|
license: mit |
|
base_model: facebook/esm2_t33_650M_UR50D |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- accuracy |
|
- precision |
|
- recall |
|
model-index: |
|
- name: esm2_t33_650M_UR50D-finetuned |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# esm2_t33_650M_UR50D-finetuned |
|
|
|
This model is a fine-tuned version of [facebook/esm2_t33_650M_UR50D](https://huggingface.co/facebook/esm2_t33_650M_UR50D) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.4409 |
|
- Tp: 539 |
|
- Tn: 617 |
|
- Fp: 47 |
|
- Fn: 93 |
|
- Accuracy: 0.8920 |
|
- Precision: 0.9198 |
|
- Recall: 0.8528 |
|
- F1-score: 0.8851 |
|
- Auc: 0.8910 |
|
- Mcc: 0.7854 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 8 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 3 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Tp | Tn | Fp | Fn | Accuracy | Precision | Recall | F1-score | Auc | Mcc | |
|
|:-------------:|:-----:|:----:|:---------------:|:---:|:---:|:--:|:---:|:--------:|:---------:|:------:|:--------:|:------:|:------:| |
|
| 0.393 | 1.0 | 1296 | 0.3616 | 507 | 615 | 49 | 125 | 0.8657 | 0.9119 | 0.8022 | 0.8535 | 0.8642 | 0.7356 | |
|
| 0.3052 | 2.0 | 2592 | 0.3159 | 536 | 608 | 56 | 96 | 0.8827 | 0.9054 | 0.8481 | 0.8758 | 0.8819 | 0.7664 | |
|
| 0.166 | 3.0 | 3888 | 0.4409 | 539 | 617 | 47 | 93 | 0.8920 | 0.9198 | 0.8528 | 0.8851 | 0.8910 | 0.7854 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.45.2 |
|
- Pytorch 1.13.1+cu117 |
|
- Datasets 3.0.1 |
|
- Tokenizers 0.20.1 |
|
|