metadata
base_model: mini1013/master_domain
library_name: setfit
metrics:
- metric
pipeline_tag: text-classification
tags:
- setfit
- sentence-transformers
- text-classification
- generated_from_setfit_trainer
widget:
- text: 여성 가방 숄더백 미니 크로스백 퀼팅백 체인백 토트백 미니백 여자 핸드백 구름백 클러치백 직장인 백팩 프리아_카멜 더블유팝
- text: 국내 잔스포츠 백팩 슈퍼브레이크 4QUT 블랙 학생 여성 가벼운 가방 캠핑 여행 당일 가원
- text: 국내생산 코튼 양줄면주머니 미니&에코 주머니 7종 학원 학교 만들기수업 양줄주머니_14cmX28cm(J14) 명성패키지
- text: 웨빙 플라워 스트랩 레디백 길이조절 가방끈 어깨끈 리폼 3-플라워가방끈-흰색 이백프로
- text: 엔비조네/가방끈/가방끈리폼/가죽끈/크로스끈/숄더끈/스트랩 AOR오링25mm_블랙오플_폭11mm *35cm 니켈 엔비조네
inference: true
model-index:
- name: SetFit with mini1013/master_domain
results:
- task:
type: text-classification
name: Text Classification
dataset:
name: Unknown
type: unknown
split: test
metrics:
- type: metric
value: 0.7867699642431466
name: Metric
SetFit with mini1013/master_domain
This is a SetFit model that can be used for Text Classification. This SetFit model uses mini1013/master_domain as the Sentence Transformer embedding model. A LogisticRegression instance is used for classification.
The model has been trained using an efficient few-shot learning technique that involves:
- Fine-tuning a Sentence Transformer with contrastive learning.
- Training a classification head with features from the fine-tuned Sentence Transformer.
Model Details
Model Description
- Model Type: SetFit
- Sentence Transformer body: mini1013/master_domain
- Classification head: a LogisticRegression instance
- Maximum Sequence Length: 512 tokens
- Number of Classes: 10 classes
Model Sources
- Repository: SetFit on GitHub
- Paper: Efficient Few-Shot Learning Without Prompts
- Blogpost: SetFit: Efficient Few-Shot Learning Without Prompts
Model Labels
Label | Examples |
---|---|
3.0 |
|
7.0 |
|
1.0 |
|
9.0 |
|
0.0 |
|
5.0 |
|
2.0 |
|
4.0 |
|
8.0 |
|
6.0 |
|
Evaluation
Metrics
Label | Metric |
---|---|
all | 0.7868 |
Uses
Direct Use for Inference
First install the SetFit library:
pip install setfit
Then you can load this model and run inference.
from setfit import SetFitModel
# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("mini1013/master_cate_ac9")
# Run inference
preds = model("웨빙 플라워 스트랩 레디백 길이조절 가방끈 어깨끈 리폼 3-플라워가방끈-흰색 이백프로")
Training Details
Training Set Metrics
Training set | Min | Median | Max |
---|---|---|---|
Word count | 3 | 9.6146 | 30 |
Label | Training Sample Count |
---|---|
0.0 | 50 |
1.0 | 17 |
2.0 | 50 |
3.0 | 50 |
4.0 | 50 |
5.0 | 50 |
6.0 | 50 |
7.0 | 50 |
8.0 | 50 |
9.0 | 50 |
Training Hyperparameters
- batch_size: (512, 512)
- num_epochs: (20, 20)
- max_steps: -1
- sampling_strategy: oversampling
- num_iterations: 40
- body_learning_rate: (2e-05, 2e-05)
- head_learning_rate: 2e-05
- loss: CosineSimilarityLoss
- distance_metric: cosine_distance
- margin: 0.25
- end_to_end: False
- use_amp: False
- warmup_proportion: 0.1
- seed: 42
- eval_max_steps: -1
- load_best_model_at_end: False
Training Results
Epoch | Step | Training Loss | Validation Loss |
---|---|---|---|
0.0137 | 1 | 0.4278 | - |
0.6849 | 50 | 0.3052 | - |
1.3699 | 100 | 0.1524 | - |
2.0548 | 150 | 0.0583 | - |
2.7397 | 200 | 0.0292 | - |
3.4247 | 250 | 0.0197 | - |
4.1096 | 300 | 0.0061 | - |
4.7945 | 350 | 0.0022 | - |
5.4795 | 400 | 0.0033 | - |
6.1644 | 450 | 0.0003 | - |
6.8493 | 500 | 0.0002 | - |
7.5342 | 550 | 0.0001 | - |
8.2192 | 600 | 0.0001 | - |
8.9041 | 650 | 0.0001 | - |
9.5890 | 700 | 0.0001 | - |
10.2740 | 750 | 0.0001 | - |
10.9589 | 800 | 0.0001 | - |
11.6438 | 850 | 0.0001 | - |
12.3288 | 900 | 0.0001 | - |
13.0137 | 950 | 0.0001 | - |
13.6986 | 1000 | 0.0001 | - |
14.3836 | 1050 | 0.0001 | - |
15.0685 | 1100 | 0.0001 | - |
15.7534 | 1150 | 0.0001 | - |
16.4384 | 1200 | 0.0001 | - |
17.1233 | 1250 | 0.0 | - |
17.8082 | 1300 | 0.0001 | - |
18.4932 | 1350 | 0.0001 | - |
19.1781 | 1400 | 0.0001 | - |
19.8630 | 1450 | 0.0001 | - |
Framework Versions
- Python: 3.10.12
- SetFit: 1.1.0.dev0
- Sentence Transformers: 3.1.1
- Transformers: 4.46.1
- PyTorch: 2.4.0+cu121
- Datasets: 2.20.0
- Tokenizers: 0.20.0
Citation
BibTeX
@article{https://doi.org/10.48550/arxiv.2209.11055,
doi = {10.48550/ARXIV.2209.11055},
url = {https://arxiv.org/abs/2209.11055},
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Efficient Few-Shot Learning Without Prompts},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}