|
--- |
|
base_model: mini1013/master_domain |
|
library_name: setfit |
|
metrics: |
|
- accuracy |
|
pipeline_tag: text-classification |
|
tags: |
|
- setfit |
|
- sentence-transformers |
|
- text-classification |
|
- generated_from_setfit_trainer |
|
widget: |
|
- text: '[당일출고/백화점정품] 나스 래디언트 크리미 컨실러 6ml / 바닐라 바닐라 에스엠(SM)월드' |
|
- text: '[갤러리아] [수분 피팅 프라이머] 프로텍션 SPF 50 PA+++(한화갤러리아㈜ 광교점) 프로텍션 SPF 50 PA+++ 한화갤러리아(주)' |
|
- text: '[빌리프] [24MS]시카 밤 쿠션 핑크 베이지 기본 주식회사 인터파크커머스' |
|
- text: (백화) 오휘 24RN 얼티밋 커버 메쉬 쿠션 1호 383007 옵션없음 펀펀몰 |
|
- text: 나스 래디언스 프라이머 30ml(SPF35) 옵션없음 블루밍컴퍼니 |
|
inference: true |
|
model-index: |
|
- name: SetFit with mini1013/master_domain |
|
results: |
|
- task: |
|
type: text-classification |
|
name: Text Classification |
|
dataset: |
|
name: Unknown |
|
type: unknown |
|
split: test |
|
metrics: |
|
- type: accuracy |
|
value: 0.7155172413793104 |
|
name: Accuracy |
|
--- |
|
|
|
# SetFit with mini1013/master_domain |
|
|
|
This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [mini1013/master_domain](https://huggingface.co/mini1013/master_domain) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification. |
|
|
|
The model has been trained using an efficient few-shot learning technique that involves: |
|
|
|
1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning. |
|
2. Training a classification head with features from the fine-tuned Sentence Transformer. |
|
|
|
## Model Details |
|
|
|
### Model Description |
|
- **Model Type:** SetFit |
|
- **Sentence Transformer body:** [mini1013/master_domain](https://huggingface.co/mini1013/master_domain) |
|
- **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance |
|
- **Maximum Sequence Length:** 512 tokens |
|
- **Number of Classes:** 7 classes |
|
<!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) --> |
|
<!-- - **Language:** Unknown --> |
|
<!-- - **License:** Unknown --> |
|
|
|
### Model Sources |
|
|
|
- **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit) |
|
- **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055) |
|
- **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit) |
|
|
|
### Model Labels |
|
| Label | Examples | |
|
|:------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| |
|
| 0.0 | <ul><li>'콜라겐 비비크림 50g 23호 옵션없음 심완태'</li><li>'본체청정 물광 커버력 좋은 재생 톤업 bb 비비 크림 연 퍼펙트 매직 50ml 옵션없음 에테르'</li><li>'빈토르테 미네랄 CC크림 자외선차단 SPF50+ 30g 옵션없음 토스토'</li></ul> | |
|
| 3.0 | <ul><li>'바비브라운 코렉터 1.4g 피치 비스크 호이컴퍼니'</li><li>'더샘 커버 퍼펙션 트리플 팟 컨실러 5colors 04 톤업 베이지 주식회사 더샘인터내셔날'</li><li>'티핏 tfit 커버 업 프로 컨실러 15G 03 쿨 티핏클래스 주식회사'</li></ul> | |
|
| 1.0 | <ul><li>'누즈 케어 톤업 30ml(SPF50+) 옵션없음 달토끼네멋진마켓'</li><li>'MAC 맥 스트롭 크림 50ml 피치라이트 호이컴퍼니'</li><li>'더후 공진향 미 럭셔리 선베이스 45ml33881531 옵션없음 씨플랩몰'</li></ul> | |
|
| 5.0 | <ul><li>'에이지투웨니스 벨벳 래스팅 팩트 14g + 14g(리필, SPF50+) 미디움베이지 위브로5'</li><li>'메리쏘드 릴커버 멜팅팩트 본품 11g + 리필 11g +퍼프2개 내추럴베이지(본품+리필)+퍼프2개 주식회사 벨라솔레'</li><li>'퓌 쿠션 스웨이드 15g(SPF50+) 누드스웨이드(03) 강원상회'</li></ul> | |
|
| 4.0 | <ul><li>'쥬리아 루나리스 실키 핏 스킨카바 23호리필내장 옵션없음 에테르노'</li><li>'Almay 프레스드 파우더 올 세트 노 샤인, 마이 베스트 라이트, [100] 0.20 oz 옵션없음 케이피스토어'</li><li>'철벽보습커버 21호 리필내장 쥬얼성분배합 투웨이케익 옵션없음 후니후니003'</li></ul> | |
|
| 6.0 | <ul><li>'VDL 루미레이어 프라이머 30ml 옵션없음 페퍼파우더'</li><li>'어바웃톤 블러 래스팅 스틱 프라이머 10g AT.블러 래스팅 스틱 프라이머 (주)삐아'</li><li>'로라 메르시에 퓨어 캔버스 프라이머 25ml - 트래블 사이즈 하이드레이팅 고온누리'</li></ul> | |
|
| 2.0 | <ul><li>'후 공진향 미 럭셔리 비비 스페셜 세트 267578 옵션없음 펀펀마켓'</li><li>'케이트 리얼 커버 리퀴드 파운데이션 세미 매트 + 스틱컨실러 A 세트 케이트'</li><li>'커버력높은 쿠션팩트 승무원팩트 본품+리필 or 광채CC크림 2종세트 SPF 50+ 뷰디아니'</li></ul> | |
|
|
|
## Evaluation |
|
|
|
### Metrics |
|
| Label | Accuracy | |
|
|:--------|:---------| |
|
| **all** | 0.7155 | |
|
|
|
## Uses |
|
|
|
### Direct Use for Inference |
|
|
|
First install the SetFit library: |
|
|
|
```bash |
|
pip install setfit |
|
``` |
|
|
|
Then you can load this model and run inference. |
|
|
|
```python |
|
from setfit import SetFitModel |
|
|
|
# Download from the 🤗 Hub |
|
model = SetFitModel.from_pretrained("mini1013/master_cate_bt4_test") |
|
# Run inference |
|
preds = model("나스 래디언스 프라이머 30ml(SPF35) 옵션없음 블루밍컴퍼니") |
|
``` |
|
|
|
<!-- |
|
### Downstream Use |
|
|
|
*List how someone could finetune this model on their own dataset.* |
|
--> |
|
|
|
<!-- |
|
### Out-of-Scope Use |
|
|
|
*List how the model may foreseeably be misused and address what users ought not to do with the model.* |
|
--> |
|
|
|
<!-- |
|
## Bias, Risks and Limitations |
|
|
|
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.* |
|
--> |
|
|
|
<!-- |
|
### Recommendations |
|
|
|
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.* |
|
--> |
|
|
|
## Training Details |
|
|
|
### Training Set Metrics |
|
| Training set | Min | Median | Max | |
|
|:-------------|:----|:-------|:----| |
|
| Word count | 5 | 9.7872 | 19 | |
|
|
|
| Label | Training Sample Count | |
|
|:------|:----------------------| |
|
| 0.0 | 19 | |
|
| 1.0 | 21 | |
|
| 2.0 | 10 | |
|
| 3.0 | 19 | |
|
| 4.0 | 28 | |
|
| 5.0 | 23 | |
|
| 6.0 | 21 | |
|
|
|
### Training Hyperparameters |
|
- batch_size: (512, 512) |
|
- num_epochs: (50, 50) |
|
- max_steps: -1 |
|
- sampling_strategy: oversampling |
|
- num_iterations: 60 |
|
- body_learning_rate: (2e-05, 1e-05) |
|
- head_learning_rate: 0.01 |
|
- loss: CosineSimilarityLoss |
|
- distance_metric: cosine_distance |
|
- margin: 0.25 |
|
- end_to_end: False |
|
- use_amp: False |
|
- warmup_proportion: 0.1 |
|
- l2_weight: 0.01 |
|
- seed: 42 |
|
- eval_max_steps: -1 |
|
- load_best_model_at_end: False |
|
|
|
### Training Results |
|
| Epoch | Step | Training Loss | Validation Loss | |
|
|:-------:|:----:|:-------------:|:---------------:| |
|
| 0.0588 | 1 | 0.499 | - | |
|
| 2.9412 | 50 | 0.3295 | - | |
|
| 5.8824 | 100 | 0.0469 | - | |
|
| 8.8235 | 150 | 0.0217 | - | |
|
| 11.7647 | 200 | 0.0013 | - | |
|
| 14.7059 | 250 | 0.0001 | - | |
|
| 17.6471 | 300 | 0.0001 | - | |
|
| 20.5882 | 350 | 0.0 | - | |
|
| 23.5294 | 400 | 0.0 | - | |
|
| 26.4706 | 450 | 0.0 | - | |
|
| 29.4118 | 500 | 0.0 | - | |
|
| 32.3529 | 550 | 0.0 | - | |
|
| 35.2941 | 600 | 0.0 | - | |
|
| 38.2353 | 650 | 0.0 | - | |
|
| 41.1765 | 700 | 0.0 | - | |
|
| 44.1176 | 750 | 0.0 | - | |
|
| 47.0588 | 800 | 0.0 | - | |
|
| 50.0 | 850 | 0.0 | - | |
|
|
|
### Framework Versions |
|
- Python: 3.10.12 |
|
- SetFit: 1.1.0 |
|
- Sentence Transformers: 3.3.1 |
|
- Transformers: 4.44.2 |
|
- PyTorch: 2.2.0a0+81ea7a4 |
|
- Datasets: 3.2.0 |
|
- Tokenizers: 0.19.1 |
|
|
|
## Citation |
|
|
|
### BibTeX |
|
```bibtex |
|
@article{https://doi.org/10.48550/arxiv.2209.11055, |
|
doi = {10.48550/ARXIV.2209.11055}, |
|
url = {https://arxiv.org/abs/2209.11055}, |
|
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren}, |
|
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, |
|
title = {Efficient Few-Shot Learning Without Prompts}, |
|
publisher = {arXiv}, |
|
year = {2022}, |
|
copyright = {Creative Commons Attribution 4.0 International} |
|
} |
|
``` |
|
|
|
<!-- |
|
## Glossary |
|
|
|
*Clearly define terms in order to be accessible across audiences.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Authors |
|
|
|
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Contact |
|
|
|
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.* |
|
--> |