pawan2411's picture
Add new SentenceTransformer model.
9fc379d verified
metadata
tags:
  - sentence-transformers
  - sentence-similarity
  - feature-extraction
  - generated_from_trainer
  - dataset_size:7851
  - loss:MultipleNegativesRankingLoss
base_model: microsoft/mpnet-base
widget:
  - source_sentence: did I gain any profits over the past 10 days
    sentences:
      - >-
        Which stocks have a strong potential to see a 10% increase in the next
        10 months?
      - Did I make any money from trading in the last 10 days
      - >-
        Which stocks have a strong potential to go up by 10% in the next 10
        months?
  - source_sentence: Can you show me my holdings?
    sentences:
      - Reveal my highest-risk assets
      - Display my riskiest investment holdings
      - 'I''d like to see my portfolio details '
  - source_sentence: Do I have any stocks in my portfolio?
    sentences:
      - Are there any shares of stock included in my portfolio?
      - Unfold my individualized fintech recommendations
      - What's the numerical assessment of my portfolio?
  - source_sentence: View my report card
    sentences:
      - Which sectors are the most attractive to investors in my portfolio
      - Recalibrate portfolio from stocks to mutual fund holdings
      - Get my account overview
  - source_sentence: Which of my investments have the highest volatility?
    sentences:
      - Can I see a yearly analysis of my returns
      - Have I committed resources to any equity-driven investment funds?
      - >-
        Which of my assets show the most pronounced fluctuations in market
        value?
pipeline_tag: sentence-similarity
library_name: sentence-transformers

SentenceTransformer based on microsoft/mpnet-base

This is a sentence-transformers model finetuned from microsoft/mpnet-base. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

Model Details

Model Description

  • Model Type: Sentence Transformer
  • Base model: microsoft/mpnet-base
  • Maximum Sequence Length: 512 tokens
  • Output Dimensionality: 768 tokens
  • Similarity Function: Cosine Similarity

Model Sources

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: MPNetModel 
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("pawan2411/semantic-embedding_2")
# Run inference
sentences = [
    'Which of my investments have the highest volatility?',
    'Which of my assets show the most pronounced fluctuations in market value?',
    'Can I see a yearly analysis of my returns',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]

Training Details

Training Dataset

Unnamed Dataset

  • Size: 7,851 training samples
  • Columns: sentence_0 and sentence_1
  • Approximate statistics based on the first 1000 samples:
    sentence_0 sentence_1
    type string string
    details
    • min: 5 tokens
    • mean: 9.57 tokens
    • max: 19 tokens
    • min: 4 tokens
    • mean: 12.07 tokens
    • max: 27 tokens
  • Samples:
    sentence_0 sentence_1
    Show me how to switch my stock portfolio to mutual funds What steps should I take to replace my stock holdings with mutual fund investments?
    View my holdings See my investment portfolio
    How did my portfolio perform last week ? Can you give me a rundown of my portfolio's performance for the past week?
  • Loss: MultipleNegativesRankingLoss with these parameters:
    {
        "scale": 20.0,
        "similarity_fct": "cos_sim"
    }
    

Training Hyperparameters

Non-Default Hyperparameters

  • per_device_train_batch_size: 64
  • per_device_eval_batch_size: 64
  • num_train_epochs: 50
  • multi_dataset_batch_sampler: round_robin

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: no
  • prediction_loss_only: True
  • per_device_train_batch_size: 64
  • per_device_eval_batch_size: 64
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 1
  • eval_accumulation_steps: None
  • torch_empty_cache_steps: None
  • learning_rate: 5e-05
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1
  • num_train_epochs: 50
  • max_steps: -1
  • lr_scheduler_type: linear
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.0
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: False
  • fp16: False
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: None
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: False
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: False
  • hub_always_push: False
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • dispatch_batches: None
  • split_batches: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • eval_on_start: False
  • use_liger_kernel: False
  • eval_use_gather_object: False
  • batch_sampler: batch_sampler
  • multi_dataset_batch_sampler: round_robin

Training Logs

Epoch Step Training Loss
4.0650 500 2.1067
8.1301 1000 0.8233
12.1951 1500 0.6455
16.2602 2000 0.5768
20.3252 2500 0.5378
24.3902 3000 0.5155
28.4553 3500 0.499
32.5203 4000 0.4906
36.5854 4500 0.4841
40.6504 5000 0.4801
44.7154 5500 0.4746
48.7805 6000 0.4718
52.8455 6500 0.47
56.9106 7000 0.468
60.9756 7500 0.4655
65.0407 8000 0.4634
69.1057 8500 0.462
73.1707 9000 0.4604
77.2358 9500 0.46
81.3008 10000 0.4598
85.3659 10500 0.458
89.4309 11000 0.4574
93.4959 11500 0.4566
97.5610 12000 0.4565
101.6260 12500 0.4558
105.6911 13000 0.455
109.7561 13500 0.4551
113.8211 14000 0.455
117.8862 14500 0.4544
121.9512 15000 0.4533
126.0163 15500 0.4543
130.0813 16000 0.4535
134.1463 16500 0.4532
138.2114 17000 0.4522
142.2764 17500 0.4536
146.3415 18000 0.4521
4.0650 500 0.4898
8.1301 1000 0.4737
12.1951 1500 0.4681
16.2602 2000 0.4669
20.3252 2500 0.4645
24.3902 3000 0.4626
28.4553 3500 0.4586
32.5203 4000 0.4568

Framework Versions

  • Python: 3.10.12
  • Sentence Transformers: 3.1.1
  • Transformers: 4.45.2
  • PyTorch: 2.5.1+cu121
  • Accelerate: 1.1.1
  • Datasets: 3.1.0
  • Tokenizers: 0.20.3

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}

MultipleNegativesRankingLoss

@misc{henderson2017efficient,
    title={Efficient Natural Language Response Suggestion for Smart Reply},
    author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
    year={2017},
    eprint={1705.00652},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}