metadata
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:7851
- loss:MultipleNegativesRankingLoss
base_model: microsoft/mpnet-base
widget:
- source_sentence: did I gain any profits over the past 10 days
sentences:
- >-
Which stocks have a strong potential to see a 10% increase in the next
10 months?
- Did I make any money from trading in the last 10 days
- >-
Which stocks have a strong potential to go up by 10% in the next 10
months?
- source_sentence: Can you show me my holdings?
sentences:
- Reveal my highest-risk assets
- Display my riskiest investment holdings
- 'I''d like to see my portfolio details '
- source_sentence: Do I have any stocks in my portfolio?
sentences:
- Are there any shares of stock included in my portfolio?
- Unfold my individualized fintech recommendations
- What's the numerical assessment of my portfolio?
- source_sentence: View my report card
sentences:
- Which sectors are the most attractive to investors in my portfolio
- Recalibrate portfolio from stocks to mutual fund holdings
- Get my account overview
- source_sentence: Which of my investments have the highest volatility?
sentences:
- Can I see a yearly analysis of my returns
- Have I committed resources to any equity-driven investment funds?
- >-
Which of my assets show the most pronounced fluctuations in market
value?
pipeline_tag: sentence-similarity
library_name: sentence-transformers
SentenceTransformer based on microsoft/mpnet-base
This is a sentence-transformers model finetuned from microsoft/mpnet-base. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: microsoft/mpnet-base
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 768 tokens
- Similarity Function: Cosine Similarity
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: MPNetModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("pawan2411/semantic-embedding_2")
# Run inference
sentences = [
'Which of my investments have the highest volatility?',
'Which of my assets show the most pronounced fluctuations in market value?',
'Can I see a yearly analysis of my returns',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Training Details
Training Dataset
Unnamed Dataset
- Size: 7,851 training samples
- Columns:
sentence_0
andsentence_1
- Approximate statistics based on the first 1000 samples:
sentence_0 sentence_1 type string string details - min: 5 tokens
- mean: 9.57 tokens
- max: 19 tokens
- min: 4 tokens
- mean: 12.07 tokens
- max: 27 tokens
- Samples:
sentence_0 sentence_1 Show me how to switch my stock portfolio to mutual funds
What steps should I take to replace my stock holdings with mutual fund investments?
View my holdings
See my investment portfolio
How did my portfolio perform last week ?
Can you give me a rundown of my portfolio's performance for the past week?
- Loss:
MultipleNegativesRankingLoss
with these parameters:{ "scale": 20.0, "similarity_fct": "cos_sim" }
Training Hyperparameters
Non-Default Hyperparameters
per_device_train_batch_size
: 64per_device_eval_batch_size
: 64num_train_epochs
: 50multi_dataset_batch_sampler
: round_robin
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: noprediction_loss_only
: Trueper_device_train_batch_size
: 64per_device_eval_batch_size
: 64per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 5e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1num_train_epochs
: 50max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.0warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Falsefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Falsehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseeval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseuse_liger_kernel
: Falseeval_use_gather_object
: Falsebatch_sampler
: batch_samplermulti_dataset_batch_sampler
: round_robin
Training Logs
Epoch | Step | Training Loss |
---|---|---|
4.0650 | 500 | 2.1067 |
8.1301 | 1000 | 0.8233 |
12.1951 | 1500 | 0.6455 |
16.2602 | 2000 | 0.5768 |
20.3252 | 2500 | 0.5378 |
24.3902 | 3000 | 0.5155 |
28.4553 | 3500 | 0.499 |
32.5203 | 4000 | 0.4906 |
36.5854 | 4500 | 0.4841 |
40.6504 | 5000 | 0.4801 |
44.7154 | 5500 | 0.4746 |
48.7805 | 6000 | 0.4718 |
52.8455 | 6500 | 0.47 |
56.9106 | 7000 | 0.468 |
60.9756 | 7500 | 0.4655 |
65.0407 | 8000 | 0.4634 |
69.1057 | 8500 | 0.462 |
73.1707 | 9000 | 0.4604 |
77.2358 | 9500 | 0.46 |
81.3008 | 10000 | 0.4598 |
85.3659 | 10500 | 0.458 |
89.4309 | 11000 | 0.4574 |
93.4959 | 11500 | 0.4566 |
97.5610 | 12000 | 0.4565 |
101.6260 | 12500 | 0.4558 |
105.6911 | 13000 | 0.455 |
109.7561 | 13500 | 0.4551 |
113.8211 | 14000 | 0.455 |
117.8862 | 14500 | 0.4544 |
121.9512 | 15000 | 0.4533 |
126.0163 | 15500 | 0.4543 |
130.0813 | 16000 | 0.4535 |
134.1463 | 16500 | 0.4532 |
138.2114 | 17000 | 0.4522 |
142.2764 | 17500 | 0.4536 |
146.3415 | 18000 | 0.4521 |
4.0650 | 500 | 0.4898 |
8.1301 | 1000 | 0.4737 |
12.1951 | 1500 | 0.4681 |
16.2602 | 2000 | 0.4669 |
20.3252 | 2500 | 0.4645 |
24.3902 | 3000 | 0.4626 |
28.4553 | 3500 | 0.4586 |
32.5203 | 4000 | 0.4568 |
Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.1.1
- Transformers: 4.45.2
- PyTorch: 2.5.1+cu121
- Accelerate: 1.1.1
- Datasets: 3.1.0
- Tokenizers: 0.20.3
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}