|
--- |
|
license: apache-2.0 |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- accuracy |
|
model-index: |
|
- name: mpnet-adaptation_mitigation-classifier |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# mpnet-adaptation_mitigation-classifier |
|
|
|
This model is a fine-tuned version of [sentence-transformers/all-mpnet-base-v2](https://huggingface.co/sentence-transformers/all-mpnet-base-v2) on the None dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.2117 |
|
- Precision Micro: 0.9175 |
|
- Precision Weighted: 0.9181 |
|
- Precision Samples: 0.9256 |
|
- Recall Micro: 0.9281 |
|
- Recall Weighted: 0.9281 |
|
- Recall Samples: 0.9314 |
|
- F1-score: 0.9263 |
|
- Accuracy: 0.9082 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 8e-05 |
|
- train_batch_size: 8 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_steps: 200 |
|
- num_epochs: 1 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Precision Micro | Precision Weighted | Precision Samples | Recall Micro | Recall Weighted | Recall Samples | F1-score | Accuracy | |
|
|:-------------:|:-----:|:----:|:---------------:|:---------------:|:------------------:|:-----------------:|:------------:|:---------------:|:--------------:|:--------:|:--------:| |
|
| 0.3291 | 1.0 | 1051 | 0.2117 | 0.9175 | 0.9181 | 0.9256 | 0.9281 | 0.9281 | 0.9314 | 0.9263 | 0.9082 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.28.1 |
|
- Pytorch 2.0.0+cu118 |
|
- Datasets 2.11.0 |
|
- Tokenizers 0.13.3 |
|
|