klasifikasiburung / README.md
riyadifirman's picture
End of training
45a5ea5 verified
|
raw
history blame
1.93 kB
metadata
library_name: transformers
base_model: RobertZ2011/resnet-18-birb
tags:
  - generated_from_trainer
metrics:
  - accuracy
  - precision
  - recall
  - f1
model-index:
  - name: klasifikasiburung
    results: []

klasifikasiburung

This model is a fine-tuned version of RobertZ2011/resnet-18-birb on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 1.0513
  • Accuracy: 0.7765
  • Precision: 0.7801
  • Recall: 0.7765
  • F1: 0.7734

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 5

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Recall F1
1.4823 1.0 375 1.3049 0.7365 0.7549 0.7365 0.7280
1.0529 2.0 750 1.1702 0.7641 0.7706 0.7641 0.7588
0.7485 3.0 1125 1.0967 0.7689 0.7780 0.7689 0.7662
0.6476 4.0 1500 1.0676 0.7717 0.7755 0.7717 0.7688
0.4738 5.0 1875 1.0513 0.7765 0.7801 0.7765 0.7734

Framework versions

  • Transformers 4.44.2
  • Pytorch 2.4.1+cu121
  • Datasets 3.0.1
  • Tokenizers 0.19.1