aya-advprompter / README.md
simonycl's picture
Upload folder using huggingface_hub
ba41173 verified
metadata
library_name: transformers
license: cc-by-nc-4.0
base_model: CohereForAI/aya-23-8B
tags:
  - alignment-handbook
  - generated_from_trainer
datasets:
  - simonycl/aya-23-8B_advprompter_jailbreak
model-index:
  - name: aya-advprompter
    results: []

aya-advprompter

This model is a fine-tuned version of CohereForAI/aya-23-8B on the simonycl/aya-23-8B_advprompter_jailbreak dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0459
  • Rewards/chosen: 0.0182
  • Rewards/rejected: -6.7884
  • Rewards/accuracies: 1.0
  • Rewards/margins: 6.8065
  • Logps/rejected: -867.2261
  • Logps/chosen: -114.6688
  • Logits/rejected: 0.0796
  • Logits/chosen: -0.2307

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-07
  • train_batch_size: 1
  • eval_batch_size: 1
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 2
  • gradient_accumulation_steps: 16
  • total_train_batch_size: 32
  • total_eval_batch_size: 2
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.05
  • num_epochs: 2

Training results

Training Loss Epoch Step Logits/chosen Logits/rejected Logps/chosen Logps/rejected Validation Loss Rewards/accuracies Rewards/chosen Rewards/margins Rewards/rejected
0.5229 0.3612 30 -0.4619 -0.3434 -98.2886 -212.0101 0.5059 1.0 0.1820 0.4182 -0.2362
0.2411 0.7223 60 -0.4067 -0.2327 -88.9001 -330.7860 0.2135 1.0 0.2758 1.6998 -1.4240
0.0634 1.0835 90 -0.2580 -0.0357 -99.5121 -607.3592 0.0751 1.0 0.1697 4.3594 -4.1897
0.0452 1.4454 120 0.0532 0.0757 -5.9396 1.0 6.0153 -782.3494 -108.9159 0.0380 -0.2345
0.0307 1.8066 150 0.0459 0.0182 -6.7884 1.0 6.8065 -867.2261 -114.6688 0.0796 -0.2307

Framework versions

  • Transformers 4.44.2
  • Pytorch 2.3.0+cu121
  • Datasets 2.21.0
  • Tokenizers 0.19.1