Spaces:
Runtime error
Runtime error
File size: 19,921 Bytes
6996634 11097c4 3a8d578 6996634 3a8d578 9a57db2 3a8d578 6996634 e1188d0 338e898 6996634 3a8d578 1974d6c 3d5c843 1974d6c e61c1b1 6996634 3a8d578 6996634 758f33e 4ec86c0 62865d5 1974d6c 6996634 f6c9588 6996634 1685ddb 6996634 f6c9588 d85e9cd 6996634 28151ad 6996634 f6c9588 71ebe48 6996634 1974d6c 3a8d578 3d5c843 3a8d578 627a100 3a8d578 a821999 3a8d578 66b764e 3a8d578 1974d6c 4ec86c0 11097c4 4ec86c0 e73a11f 4ec86c0 e73a11f 4ec86c0 e73a11f 4ec86c0 e73a11f 17a7a79 72df787 e73a11f d1707ec e73a11f 6a83868 1974d6c e73a11f 3a8d578 39e3dea 6996634 5635774 6996634 39e3dea 6996634 0c464a4 6996634 cc140a5 6996634 bdf4f77 eb07d82 bdf4f77 eb07d82 6996634 bdf4f77 6996634 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 |
# -- Utils .py file
# -- Libraries
from typing import Any, Dict, List, Mapping, Optional
from pydantic import Extra, Field, root_validator
from langchain_community.vectorstores import FAISS
from langchain_core.runnables import RunnablePassthrough
from langchain.llms.base import LLM
from langchain.chat_models import ChatOpenAI
from langchain_core.prompts import ChatPromptTemplate
from langchain.prompts import PromptTemplate
from langchain.schema import StrOutputParser
from langchain.utils import get_from_dict_or_env
from langchain.vectorstores import Chroma
from langchain.text_splitter import RecursiveCharacterTextSplitter, CharacterTextSplitter
from langchain.chains import RetrievalQA, MapReduceDocumentsChain, ReduceDocumentsChain
from langchain.document_loaders import TextLoader
from langchain.embeddings import HuggingFaceEmbeddings, OpenAIEmbeddings
from langchain.chains import LLMChain
from langchain.evaluation import StringEvaluator
from typing import Any, Optional
from langsmith.client import Client
from langchain.smith import RunEvalConfig, run_on_dataset
from langchain.chains.combine_documents.stuff import StuffDocumentsChain
import streamlit as st
import together
import textwrap
import getpass
import spacy
import os
import re
#os.environ["TOGETHER_API_KEY"] = "6101599d6e33e3bda336b8d007ca22e35a64c72cfd52c2d8197f663389fc50c5"
#os.environ["OPENAI_API_KEY"] = "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"
os.environ["LANGCHAIN_TRACING_V2"] = "true"
client = Client()
# -- LLM class
class TogetherLLM(LLM):
"""Together large language models."""
model: str = "togethercomputer/llama-2-70b-chat"
"""model endpoint to use"""
together_api_key: str = os.environ["TOGETHER_API_KEY"]
"""Together API key"""
temperature: float = 0.7
"""What sampling temperature to use."""
max_tokens: int = 512
"""The maximum number of tokens to generate in the completion."""
original_transcription: str = ""
"""Original transcription"""
class Config:
extra = Extra.forbid
#@root_validator(skip_on_failure=True)
def validate_environment(cls, values: Dict) -> Dict:
"""Validate that the API key is set."""
api_key = get_from_dict_or_env(
values, "together_api_key", "TOGETHER_API_KEY"
)
values["together_api_key"] = api_key
return values
@property
def _llm_type(self) -> str:
"""Return type of LLM."""
return "together"
def clean_duplicates(self, transcription: str) -> str:
transcription = transcription.strip().replace('/n/n ', """
""")
new_transcription_aux = []
for text in transcription.split('\n\n'):
if text not in new_transcription_aux:
is_substring = any(transcription_aux.replace('"', '').lower() in text.replace('"', '').lower()\
for transcription_aux in new_transcription_aux)
if not is_substring:
new_transcription_aux.append(text)
return '\n\n'.join(new_transcription_aux)
def _call(
self,
prompt: str,
**kwargs: Any,
) -> str:
"""Call to Together endpoint."""
regex_transcription = r'CONTEXTO:(\n.*)+PREGUNTA'
regex_init_transcription = r"Desde el instante [0-9]+:[0-9]+:[0-9]+(?:\.[0-9]+)? hasta [0-9]+:[0-9]+:[0-9]+(?:\.[0-9]+)? [a-zA-Záéíóú ]+ dice: ?"
# -- Extract transcription
together.api_key = self.together_api_key
cleaned_prompt = self.clean_duplicates(prompt)
resultado = re.search(regex_transcription, cleaned_prompt, re.DOTALL)
resultado = re.sub(regex_init_transcription, "", resultado.group(1).strip()).replace('\"', '')
resultado_alpha_num = [re.sub(r'\W+', ' ', resultado_aux).strip().lower() for resultado_aux in resultado.split('\n\n')]
# -- Setup new transcription format, without duplicates and with its correspondent speaker
new_transcription = []
for transcription in self.original_transcription.split('\n\n'):
transcription_cleaned = re.sub(regex_init_transcription, "", transcription.strip()).replace('\"', '')
transcription_cleaned = re.sub(r'\W+', ' ', transcription_cleaned).strip().lower()
for resultado_aux in resultado_alpha_num:
if resultado_aux in transcription_cleaned:
init_transcription = re.search(regex_init_transcription, transcription).group(0)
new_transcription.append(init_transcription + '\"' + resultado_aux + '\"')
# -- Merge with original transcription
new_transcription = '\n\n'.join(list(set(new_transcription)))
new_cleaned_prompt = re.sub(regex_transcription, f"""CONTEXTO:
{new_transcription}
PREGUNTA:""", cleaned_prompt, re.DOTALL)
print(new_cleaned_prompt)
output = together.Complete.create(new_cleaned_prompt,
model=self.model,
max_tokens=self.max_tokens,
temperature=self.temperature,
)
text = output['output']['choices'][0]['text']
text = self.clean_duplicates(text)
return text
# -- Langchain evaluator
class RelevanceEvaluator(StringEvaluator):
"""An LLM-based relevance evaluator."""
def __init__(self):
llm = ChatOpenAI(model="gpt-3.5-turbo", temperature=0)
template = """En una escala del 0 al 100, ¿Como de relevante es la siguiente salida con respecto a la siguiente entrada?
--------
ENTRADA: {input}
--------
SALIDA: {prediction}
--------
Razona paso a paso porqué el score que has elegido es apropiado y despues muestra la puntuacion al final."""
self.eval_chain = LLMChain.from_string(llm=llm, template=template)
@property
def requires_input(self) -> bool:
return True
@property
def requires_reference(self) -> bool:
return False
@property
def evaluation_name(self) -> str:
return "scored_relevance"
def _evaluate_strings(
self,
prediction: str,
input: Optional[str] = None,
reference: Optional[str] = None,
**kwargs: Any
) -> dict:
evaluator_result = self.eval_chain(
dict(input=input, prediction=prediction), **kwargs
)
reasoning, score = evaluator_result["text"].split("\n", maxsplit=1)
score = re.search(r"\d+", score).group(0)
if score is not None:
score = float(score.strip()) / 100.0
return {"score": score, "reasoning": reasoning.strip()}
# -- Get GPT response
def get_gpt_response(transcription_path, query, logger):
template = """Eres un asistente. Su misión es proporcionar respuestas precisas a preguntas relacionadas con la transcripción de una entrevista de YouTube.
No saludes en tu respuesta. No repita la pregunta en su respuesta. Sea conciso y omita las exenciones de responsabilidad o los mensajes predeterminados.
Solo responda la pregunta, no agregue texto adicional. No des tu opinión personal ni tu conclusión personal. No haga conjeturas ni suposiciones.
Si no sabe la respuesta de la pregunta o el contexto está vacío, responda cortésmente por qué no sabe la respuesta. Por favor no comparta información falsa.
{context}
Pregunta: {question}
Respuesta:"""
rag_prompt_custom = PromptTemplate.from_template(template)
loader = TextLoader(transcription_path)
docs = loader.load()
text_splitter = RecursiveCharacterTextSplitter(chunk_size=3000, chunk_overlap=250, length_function=len)
splits = text_splitter.split_documents(docs)
vectorstore = Chroma.from_documents(documents=splits, embedding=OpenAIEmbeddings())
retriever = vectorstore.as_retriever()
llm = ChatOpenAI(model_name="gpt-3.5-turbo", temperature=0)
def format_docs(docs):
return "\n\n".join(doc.page_content for doc in docs)
rag_chain = (
{"context": retriever, "question": RunnablePassthrough()}
| rag_prompt_custom
| llm
| StrOutputParser()
)
llm_output = rag_chain.invoke(query)
return llm_output
def get_character_info_gpt(text, character):
vectorstore = FAISS.from_texts(
[text], embedding=OpenAIEmbeddings()
)
retriever = vectorstore.as_retriever()
template = """Responde a la siguiente pregunta basandote unicamente en el siguiente contexto:
{context}
Pregunta: {question}
"""
prompt = ChatPromptTemplate.from_template(template)
model = ChatOpenAI()
chain = (
{"context": retriever, "question": RunnablePassthrough()}
| prompt
| model
| StrOutputParser()
)
return chain.invoke("¿Quien es {}?".format(character))
# -- Text summarisation with OpenAI (map-reduce technique)
def summarise_doc(transcription_path, model_name, model=None):
if model_name == 'gpt':
llm = ChatOpenAI(temperature=0, max_tokens=1024)
# -- Map
loader = TextLoader(transcription_path)
docs = loader.load()
map_template = """Lo siguiente es listado de fragmentos de una conversacion:
{docs}
En base a este listado, por favor identifica los temas/topics principales.
Respuesta:"""
map_prompt = PromptTemplate.from_template(map_template)
map_chain = LLMChain(llm=llm, prompt=map_prompt)
# -- Reduce
reduce_template = """A continuacion se muestra un conjunto de resumenes:
{docs}
Usalos para crear un unico resumen consolidado de todos los temas/topics principales.
Respuesta:"""
reduce_prompt = PromptTemplate.from_template(reduce_template)
# Run chain
reduce_chain = LLMChain(llm=llm, prompt=reduce_prompt)
# Takes a list of documents, combines them into a single string, and passes this to an LLMChain
combine_documents_chain = StuffDocumentsChain(
llm_chain=reduce_chain, document_variable_name="docs"
)
# Combines and iteravely reduces the mapped documents
reduce_documents_chain = ReduceDocumentsChain(
# This is final chain that is called.
combine_documents_chain=combine_documents_chain,
# If documents exceed context for `StuffDocumentsChain`
collapse_documents_chain=combine_documents_chain,
# The maximum number of tokens to group documents into.
token_max=3000,
)
# Combining documents by mapping a chain over them, then combining results
map_reduce_chain = MapReduceDocumentsChain(
# Map chain
llm_chain=map_chain,
# Reduce chain
reduce_documents_chain=reduce_documents_chain,
# The variable name in the llm_chain to put the documents in
document_variable_name="docs",
# Return the results of the map steps in the output
return_intermediate_steps=False,
)
text_splitter = CharacterTextSplitter.from_tiktoken_encoder(
chunk_size=3000, chunk_overlap=0
)
split_docs = text_splitter.split_documents(docs)
doc_summary = map_reduce_chain.run(split_docs)
else:
# -- Keep original transcription
with open(transcription_path, 'r') as f:
docs = f.read()
print("READ DOCUMENT")
print(docs)
llm = TogetherLLM(
model= model,
temperature = 0.0,
max_tokens = 1024,
original_transcription = docs
)
# Map
map_template = """Lo siguiente es un extracto de una conversación entre dos hablantes en español.
{docs}
Por favor resuma la conversación en español.
Resumen:"""
map_prompt = PromptTemplate(template=map_template, input_variables=["docs"])
map_chain = LLMChain(llm=llm, prompt=map_prompt)
# Reduce
reduce_template = """Lo siguiente es una lista de resumenes en español:
{doc_summaries}
Tómelos y descríbalos en un resumen final consolidado en español. Además, enumera los temas principales de la conversación en español.
Resumen:"""
reduce_prompt = PromptTemplate(template=reduce_template, input_variables=["doc_summaries"])
# Run chain
reduce_chain = LLMChain(llm=llm, prompt=reduce_prompt)
# Takes a list of documents, combines them into a single string, and passes this to an LLMChain
combine_documents_chain = StuffDocumentsChain(
llm_chain=reduce_chain, document_variable_name="doc_summaries"
)
# Combines and iteravely reduces the mapped documents
reduce_documents_chain = ReduceDocumentsChain(
# This is final chain that is called.
combine_documents_chain=combine_documents_chain,
# If documents exceed context for `StuffDocumentsChain`
collapse_documents_chain=combine_documents_chain,
# The maximum number of tokens to group documents into.
verbose=True,
token_max=1024
)
# Combining documents by mapping a chain over them, then combining results
map_reduce_chain = MapReduceDocumentsChain(
# Map chain
llm_chain=map_chain,
# Reduce chain
reduce_documents_chain=reduce_documents_chain,
# The variable name in the llm_chain to put the documents in
document_variable_name="docs",
# Return the results of the map steps in the output
return_intermediate_steps=False,
verbose=True
)
text_splitter = CharacterTextSplitter(
separator = "\n\n",
chunk_size = 2000,
chunk_overlap = 50,
length_function = len,
is_separator_regex = True,
)
split_docs = text_splitter.create_documents([docs])
doc_summary = map_reduce_chain.run(split_docs)
return doc_summary
# -- Python function to setup basic features: SpaCy pipeline and LLM model
@st.cache_resource
def setup_app(transcription_path, emb_model, model, _logger):
# -- Setup enviroment and features
nlp = spacy.load('es_core_news_lg')
_logger.info('Setup environment and features...')
# -- Setup LLM
together.api_key = os.environ["TOGETHER_API_KEY"]
# List available models and descriptons
models = together.Models.list()
# Set llama2 7b LLM
#together.Models.start(model)
_logger.info('Setup environment and features - FINISHED!')
# -- Read translated transcription
_logger.info('Loading transcription...')
loader = TextLoader(transcription_path)
documents = loader.load()
# Splitting the text into chunks
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1500, chunk_overlap=100)
texts = text_splitter.split_documents(documents)
_logger.info('Loading transcription - FINISHED!')
# -- Load embedding
_logger.info('Loading embedding...')
encode_kwargs = {'normalize_embeddings': True} # set True to compute cosine similarity
model_norm = HuggingFaceEmbeddings(
model_name=emb_model,
model_kwargs={'device': 'cpu'},
encode_kwargs=encode_kwargs
)
_logger.info('Loading embedding - FINISHED!')
# -- Create document database
_logger.info('Creating document database...')
# Embed and store the texts
# Supplying a persist_directory will store the embeddings on disk
persist_directory = 'db'
## Here is the nmew embeddings being used
embedding = model_norm
vectordb = Chroma.from_documents(documents=texts,
embedding=embedding,
persist_directory=persist_directory)
# -- Make a retreiver
retriever = vectordb.as_retriever(search_kwargs={"k": 5})
_logger.info('Creating document database - FINISHED!')
_logger.info('Setup finished!')
return nlp, retriever
# -- Function to get prompt template
def get_prompt(instruction, system_prompt, b_sys, e_sys, b_inst, e_inst, _logger):
new_system_prompt = b_sys + system_prompt + e_sys
prompt_template = b_inst + new_system_prompt + instruction + e_inst
_logger.info('Prompt template created: {}'.format(instruction))
return prompt_template
# -- Function to create the chain to answer questions
@st.cache_resource
def create_llm_chain(model, _retriever, _chain_type_kwargs, _logger, transcription_path):
_logger.info('Creating LLM chain...')
# -- Keep original transcription
with open(transcription_path, 'r') as f:
formatted_transcription = f.read()
llm = TogetherLLM(
model= model,
temperature = 0.0,
max_tokens = 1024,
original_transcription = formatted_transcription
)
qa_chain = RetrievalQA.from_chain_type(llm=llm,
chain_type="stuff",
retriever=_retriever,
chain_type_kwargs=_chain_type_kwargs,
return_source_documents=True)
_logger.info('Creating LLM chain - FINISHED!')
return qa_chain
# -------------------------------------------
# -- Auxiliar functions
def wrap_text_preserve_newlines(text, width=110):
# Split the input text into lines based on newline characters
lines = text.split('\n')
# Wrap each line individually
wrapped_lines = [textwrap.fill(line, width=width) for line in lines]
# Join the wrapped lines back together using newline characters
wrapped_text = '\n'.join(wrapped_lines)
return wrapped_text
def process_llm_response(llm_response):
return wrap_text_preserve_newlines(llm_response)
def time_to_seconds(time_str):
parts = time_str.split(':')
hours, minutes, seconds = map(float, parts)
return int((hours * 3600) + (minutes * 60) + seconds)
# -- Extract seconds from transcription
def add_hyperlink_and_convert_to_seconds(text):
time_pattern = r'(\d{2}:\d{2}:\d{2}(?:.\d{6})?)'
def get_seconds(match, text):
if len(match) == 2:
start_time_str, end_time_str = match[0], match[1]
else:
start_time_str = match[0]
end_time_str = re.findall(r"Desde el instante {} hasta {}".format(start_time_str, time_pattern), text)[0].split('hasta ')[-1]
start_time_seconds = time_to_seconds(start_time_str)
end_time_seconds = time_to_seconds(end_time_str)
return start_time_str, start_time_seconds, end_time_str, end_time_seconds
start_time_str, start_time_seconds, end_time_str, end_time_seconds = get_seconds(re.findall(time_pattern, text), text)
return start_time_str, start_time_seconds, end_time_str, end_time_seconds
# -- Streamlit HTML template
def typewrite(youtube_video_url, i=0):
youtube_video_url = youtube_video_url.replace("?enablejsapi=1", "")
margin = "{margin: 0;}"
html = f"""
<html>
<style>
p {margin}
</style>
<body>
<script src="https://www.youtube.com/player_api"></script>
<p align="center">
<iframe id="player_{i}" src="{youtube_video_url}" width="600" height="450"></iframe>
</p>
</body>
</html>
"""
return html |