File size: 19,921 Bytes
6996634
 
 
 
11097c4
3a8d578
6996634
3a8d578
9a57db2
3a8d578
 
6996634
 
e1188d0
338e898
6996634
3a8d578
1974d6c
 
 
3d5c843
1974d6c
e61c1b1
6996634
 
 
3a8d578
6996634
 
 
 
758f33e
4ec86c0
62865d5
 
1974d6c
6996634
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f6c9588
 
 
 
6996634
 
 
 
 
 
 
 
 
1685ddb
6996634
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f6c9588
d85e9cd
6996634
 
 
 
 
 
28151ad
6996634
 
 
 
 
 
f6c9588
71ebe48
6996634
1974d6c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3a8d578
3d5c843
3a8d578
 
 
 
 
 
 
 
 
627a100
3a8d578
 
a821999
3a8d578
 
 
 
 
 
 
 
 
 
 
66b764e
3a8d578
 
 
 
1974d6c
4ec86c0
 
11097c4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4ec86c0
e73a11f
 
 
 
 
 
 
 
 
 
 
 
 
4ec86c0
e73a11f
 
 
 
 
 
4ec86c0
e73a11f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4ec86c0
e73a11f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
17a7a79
72df787
 
 
e73a11f
 
 
 
 
d1707ec
e73a11f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6a83868
 
1974d6c
e73a11f
3a8d578
39e3dea
6996634
 
 
 
 
 
 
 
 
 
 
 
5635774
6996634
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
39e3dea
6996634
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0c464a4
 
6996634
 
 
 
 
 
 
 
cc140a5
6996634
 
bdf4f77
eb07d82
 
 
 
bdf4f77
eb07d82
6996634
 
 
bdf4f77
6996634
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
# -- Utils .py file
# -- Libraries
from   typing                      import Any, Dict, List, Mapping, Optional
from   pydantic                    import Extra, Field, root_validator
from   langchain_community.vectorstores import FAISS
from   langchain_core.runnables    import RunnablePassthrough
from   langchain.llms.base         import LLM
from   langchain.chat_models       import ChatOpenAI
from   langchain_core.prompts      import ChatPromptTemplate
from   langchain.prompts           import PromptTemplate
from   langchain.schema            import StrOutputParser
from   langchain.utils             import get_from_dict_or_env
from   langchain.vectorstores      import Chroma
from   langchain.text_splitter     import RecursiveCharacterTextSplitter, CharacterTextSplitter
from   langchain.chains            import RetrievalQA, MapReduceDocumentsChain, ReduceDocumentsChain
from   langchain.document_loaders  import TextLoader
from   langchain.embeddings        import HuggingFaceEmbeddings, OpenAIEmbeddings
from   langchain.chains            import LLMChain
from   langchain.evaluation        import StringEvaluator
from   typing                      import Any, Optional
from   langsmith.client            import Client
from   langchain.smith             import RunEvalConfig, run_on_dataset
from   langchain.chains.combine_documents.stuff import StuffDocumentsChain
import streamlit as st
import together
import textwrap
import getpass
import spacy
import os
import re

#os.environ["TOGETHER_API_KEY"] = "6101599d6e33e3bda336b8d007ca22e35a64c72cfd52c2d8197f663389fc50c5"
#os.environ["OPENAI_API_KEY"]   = "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"
os.environ["LANGCHAIN_TRACING_V2"] = "true"

client = Client()

# -- LLM class
class TogetherLLM(LLM):
    """Together large language models."""

    model: str = "togethercomputer/llama-2-70b-chat"
    """model endpoint to use"""

    together_api_key: str = os.environ["TOGETHER_API_KEY"]
    """Together API key"""

    temperature: float = 0.7
    """What sampling temperature to use."""

    max_tokens: int = 512
    """The maximum number of tokens to generate in the completion."""

    original_transcription: str = ""
    """Original transcription"""

    class Config:
        extra = Extra.forbid

    #@root_validator(skip_on_failure=True)
    def validate_environment(cls, values: Dict) -> Dict:
        """Validate that the API key is set."""
        api_key = get_from_dict_or_env(
            values, "together_api_key", "TOGETHER_API_KEY"
        )
        values["together_api_key"] = api_key
        return values

    @property
    def _llm_type(self) -> str:
        """Return type of LLM."""
        return "together"

    def clean_duplicates(self, transcription: str) -> str:
      transcription = transcription.strip().replace('/n/n ', """
""")
      new_transcription_aux = []
      for text in transcription.split('\n\n'):
          if text not in new_transcription_aux:
            is_substring = any(transcription_aux.replace('"', '').lower() in text.replace('"', '').lower()\
                               for transcription_aux in new_transcription_aux)
            if not is_substring:
                new_transcription_aux.append(text)
      return '\n\n'.join(new_transcription_aux)

    def _call(
        self,
        prompt: str,
        **kwargs: Any,
    ) -> str:
        """Call to Together endpoint."""
        regex_transcription = r'CONTEXTO:(\n.*)+PREGUNTA'
        regex_init_transcription = r"Desde el instante [0-9]+:[0-9]+:[0-9]+(?:\.[0-9]+)? hasta [0-9]+:[0-9]+:[0-9]+(?:\.[0-9]+)? [a-zA-Záéíóú ]+ dice: ?"

        # -- Extract transcription
        together.api_key = self.together_api_key
        cleaned_prompt   = self.clean_duplicates(prompt)
        resultado        = re.search(regex_transcription, cleaned_prompt, re.DOTALL)

        resultado        = re.sub(regex_init_transcription, "", resultado.group(1).strip()).replace('\"', '')
        resultado_alpha_num = [re.sub(r'\W+', ' ', resultado_aux).strip().lower() for resultado_aux in resultado.split('\n\n')]

        # -- Setup new transcription format, without duplicates and with its correspondent speaker
        new_transcription = []
        for transcription in self.original_transcription.split('\n\n'):
          transcription_cleaned = re.sub(regex_init_transcription, "", transcription.strip()).replace('\"', '')
          transcription_cleaned = re.sub(r'\W+', ' ', transcription_cleaned).strip().lower()
          for resultado_aux in resultado_alpha_num:
            if resultado_aux in transcription_cleaned:
              init_transcription = re.search(regex_init_transcription, transcription).group(0)
              new_transcription.append(init_transcription + '\"' + resultado_aux + '\"')
        # -- Merge with original transcription
        new_transcription = '\n\n'.join(list(set(new_transcription)))
        new_cleaned_prompt = re.sub(regex_transcription, f"""CONTEXTO:
{new_transcription}
PREGUNTA:""", cleaned_prompt, re.DOTALL)
        print(new_cleaned_prompt)
        output = together.Complete.create(new_cleaned_prompt,
                                          model=self.model,
                                          max_tokens=self.max_tokens,
                                          temperature=self.temperature,
                                          )
        text = output['output']['choices'][0]['text']
        text = self.clean_duplicates(text)
        return text

# -- Langchain evaluator
class RelevanceEvaluator(StringEvaluator):
    """An LLM-based relevance evaluator."""

    def __init__(self):
        llm = ChatOpenAI(model="gpt-3.5-turbo", temperature=0)

        template = """En una escala del 0 al 100, ¿Como de relevante es la siguiente salida con respecto a la siguiente entrada?
        --------
        ENTRADA: {input}
        --------
        SALIDA: {prediction}
        --------
        Razona paso a paso porqué el score que has elegido es apropiado y despues muestra la puntuacion al final."""

        self.eval_chain = LLMChain.from_string(llm=llm, template=template)

    @property
    def requires_input(self) -> bool:
        return True

    @property
    def requires_reference(self) -> bool:
        return False

    @property
    def evaluation_name(self) -> str:
        return "scored_relevance"

    def _evaluate_strings(
        self,
        prediction: str,
        input: Optional[str] = None,
        reference: Optional[str] = None,
        **kwargs: Any
    ) -> dict:
        evaluator_result = self.eval_chain(
            dict(input=input, prediction=prediction), **kwargs
        )
        reasoning, score = evaluator_result["text"].split("\n", maxsplit=1)
        score = re.search(r"\d+", score).group(0)
        if score is not None:
            score = float(score.strip()) / 100.0
        return {"score": score, "reasoning": reasoning.strip()}

# -- Get GPT response
def get_gpt_response(transcription_path, query, logger):
    template = """Eres un asistente. Su misión es proporcionar respuestas precisas a preguntas relacionadas con la transcripción de una entrevista de YouTube.
    No saludes en tu respuesta. No repita la pregunta en su respuesta. Sea conciso y omita las exenciones de responsabilidad o los mensajes predeterminados.
    Solo responda la pregunta, no agregue texto adicional. No des tu opinión personal ni tu conclusión personal. No haga conjeturas ni suposiciones.
    Si no sabe la respuesta de la pregunta o el contexto está vacío, responda cortésmente por qué no sabe la respuesta. Por favor no comparta información falsa.
    {context}
    Pregunta: {question}
    Respuesta:"""
    
    rag_prompt_custom = PromptTemplate.from_template(template)
    loader = TextLoader(transcription_path)
    docs = loader.load()

    text_splitter = RecursiveCharacterTextSplitter(chunk_size=3000, chunk_overlap=250, length_function=len)
    splits = text_splitter.split_documents(docs)
    
    vectorstore = Chroma.from_documents(documents=splits, embedding=OpenAIEmbeddings())
    retriever = vectorstore.as_retriever()
    
    llm = ChatOpenAI(model_name="gpt-3.5-turbo", temperature=0)    
    
    def format_docs(docs):
        return "\n\n".join(doc.page_content for doc in docs)
    
    rag_chain = (
        {"context": retriever, "question": RunnablePassthrough()}
        | rag_prompt_custom
        | llm
        | StrOutputParser()
    )
    llm_output = rag_chain.invoke(query)
    return llm_output

def get_character_info_gpt(text, character):
    vectorstore = FAISS.from_texts(
        [text], embedding=OpenAIEmbeddings()
    )
    retriever = vectorstore.as_retriever()
    
    template = """Responde a la siguiente pregunta basandote unicamente en el siguiente contexto:
    {context}
    
    Pregunta: {question}
    """
    prompt = ChatPromptTemplate.from_template(template)
    
    model = ChatOpenAI()

    chain = (
        {"context": retriever, "question": RunnablePassthrough()}
        | prompt
        | model
        | StrOutputParser()
    )
    return chain.invoke("¿Quien es {}?".format(character))

    
# -- Text summarisation with OpenAI (map-reduce technique)
def summarise_doc(transcription_path, model_name, model=None):
    if model_name == 'gpt':
        llm = ChatOpenAI(temperature=0, max_tokens=1024)
        
        # -- Map
        loader = TextLoader(transcription_path)
        docs   = loader.load()
        map_template = """Lo siguiente es listado de fragmentos de una conversacion:
        {docs}
        En base a este listado, por favor identifica los temas/topics principales.
        Respuesta:"""
        map_prompt = PromptTemplate.from_template(map_template)
        map_chain = LLMChain(llm=llm, prompt=map_prompt)
    
        # -- Reduce
        reduce_template = """A continuacion se muestra un conjunto de resumenes:
        {docs}
        Usalos para crear un unico resumen consolidado de todos los temas/topics principales. 
        Respuesta:"""
        reduce_prompt = PromptTemplate.from_template(reduce_template)
    
        # Run chain
        reduce_chain = LLMChain(llm=llm, prompt=reduce_prompt)
        
        # Takes a list of documents, combines them into a single string, and passes this to an LLMChain
        combine_documents_chain = StuffDocumentsChain(
            llm_chain=reduce_chain, document_variable_name="docs"
        )
        
        # Combines and iteravely reduces the mapped documents
        reduce_documents_chain = ReduceDocumentsChain(
            # This is final chain that is called.
            combine_documents_chain=combine_documents_chain,
            # If documents exceed context for `StuffDocumentsChain`
            collapse_documents_chain=combine_documents_chain,
            # The maximum number of tokens to group documents into.
            token_max=3000,
        )
    
        # Combining documents by mapping a chain over them, then combining results
        map_reduce_chain = MapReduceDocumentsChain(
            # Map chain
            llm_chain=map_chain,
            # Reduce chain
            reduce_documents_chain=reduce_documents_chain,
            # The variable name in the llm_chain to put the documents in
            document_variable_name="docs",
            # Return the results of the map steps in the output
            return_intermediate_steps=False,
        )
        
        text_splitter = CharacterTextSplitter.from_tiktoken_encoder(
            chunk_size=3000, chunk_overlap=0
        )
        split_docs  = text_splitter.split_documents(docs)
        doc_summary = map_reduce_chain.run(split_docs)
    else:
        # -- Keep original transcription
        with open(transcription_path, 'r') as f:
            docs = f.read()

        print("READ DOCUMENT")
        print(docs)
        
        llm = TogetherLLM(
            model= model,
            temperature = 0.0,
            max_tokens = 1024,
            original_transcription = docs
        )
        
        # Map
        map_template = """Lo siguiente es un extracto de una conversación entre dos hablantes en español.
{docs}
Por favor resuma la conversación en español.
Resumen:"""
        map_prompt = PromptTemplate(template=map_template, input_variables=["docs"])
        map_chain  = LLMChain(llm=llm, prompt=map_prompt)
        
        # Reduce
        reduce_template = """Lo siguiente es una lista de resumenes en español:
{doc_summaries}
Tómelos y descríbalos en un resumen final consolidado en español. Además, enumera los temas principales de la conversación en español.

Resumen:"""
        reduce_prompt   = PromptTemplate(template=reduce_template, input_variables=["doc_summaries"])
        
        # Run chain
        reduce_chain = LLMChain(llm=llm, prompt=reduce_prompt)
        
        # Takes a list of documents, combines them into a single string, and passes this to an LLMChain
        combine_documents_chain = StuffDocumentsChain(
            llm_chain=reduce_chain, document_variable_name="doc_summaries"
        )
        
        # Combines and iteravely reduces the mapped documents
        reduce_documents_chain = ReduceDocumentsChain(
            # This is final chain that is called.
            combine_documents_chain=combine_documents_chain,
            # If documents exceed context for `StuffDocumentsChain`
            collapse_documents_chain=combine_documents_chain,
            # The maximum number of tokens to group documents into.
            verbose=True,
            token_max=1024
        )
        
        # Combining documents by mapping a chain over them, then combining results
        map_reduce_chain = MapReduceDocumentsChain(
            # Map chain
            llm_chain=map_chain,
            # Reduce chain
            reduce_documents_chain=reduce_documents_chain,
            # The variable name in the llm_chain to put the documents in
            document_variable_name="docs",
            # Return the results of the map steps in the output
            return_intermediate_steps=False,
            verbose=True
        )
        text_splitter = CharacterTextSplitter(
            separator = "\n\n",
            chunk_size = 2000,
            chunk_overlap  = 50,
            length_function = len,
            is_separator_regex = True,
        )
        split_docs  = text_splitter.create_documents([docs])
        doc_summary = map_reduce_chain.run(split_docs)
    
    return doc_summary

# -- Python function to setup basic features: SpaCy pipeline and LLM model
@st.cache_resource
def setup_app(transcription_path, emb_model, model, _logger):
    # -- Setup enviroment and features
    nlp        = spacy.load('es_core_news_lg')

    _logger.info('Setup environment and features...')

    # -- Setup LLM
    together.api_key = os.environ["TOGETHER_API_KEY"]
    # List available models and descriptons
    models = together.Models.list()
    # Set llama2 7b LLM
    #together.Models.start(model)
    _logger.info('Setup environment and features - FINISHED!')

    # -- Read translated transcription
    _logger.info('Loading transcription...')
    loader = TextLoader(transcription_path)
    documents = loader.load()
    # Splitting the text into chunks
    text_splitter = RecursiveCharacterTextSplitter(chunk_size=1500, chunk_overlap=100)
    texts = text_splitter.split_documents(documents)
    _logger.info('Loading transcription - FINISHED!')

    # -- Load embedding
    _logger.info('Loading embedding...')
    encode_kwargs = {'normalize_embeddings': True} # set True to compute cosine similarity
    model_norm = HuggingFaceEmbeddings(
        model_name=emb_model,
        model_kwargs={'device': 'cpu'},
        encode_kwargs=encode_kwargs
    )
    _logger.info('Loading embedding - FINISHED!')

    # -- Create document database
    _logger.info('Creating document database...')
    # Embed and store the texts
    # Supplying a persist_directory will store the embeddings on disk
    persist_directory = 'db'
    ## Here is the nmew embeddings being used
    embedding = model_norm

    vectordb = Chroma.from_documents(documents=texts,
                                     embedding=embedding,
                                     persist_directory=persist_directory)

    # -- Make a retreiver
    retriever = vectordb.as_retriever(search_kwargs={"k": 5})
    _logger.info('Creating document database - FINISHED!')
    _logger.info('Setup finished!')
    return nlp, retriever

# -- Function to get prompt template
def get_prompt(instruction, system_prompt, b_sys, e_sys, b_inst, e_inst, _logger):
    new_system_prompt = b_sys + system_prompt + e_sys
    prompt_template   =  b_inst + new_system_prompt + instruction + e_inst
    _logger.info('Prompt template created: {}'.format(instruction))
    return prompt_template

# -- Function to create the chain to answer questions
@st.cache_resource
def create_llm_chain(model, _retriever, _chain_type_kwargs, _logger, transcription_path):
    _logger.info('Creating LLM chain...')
    # -- Keep original transcription
    with open(transcription_path, 'r') as f:
        formatted_transcription = f.read()
    
    llm = TogetherLLM(
        model= model,
        temperature = 0.0,
        max_tokens = 1024,
        original_transcription = formatted_transcription
    )
    qa_chain = RetrievalQA.from_chain_type(llm=llm,
                                           chain_type="stuff",
                                           retriever=_retriever,
                                           chain_type_kwargs=_chain_type_kwargs,
                                           return_source_documents=True)
    _logger.info('Creating LLM chain - FINISHED!')
    return qa_chain

# -------------------------------------------
# -- Auxiliar functions
def wrap_text_preserve_newlines(text, width=110):
    # Split the input text into lines based on newline characters
    lines = text.split('\n')

    # Wrap each line individually
    wrapped_lines = [textwrap.fill(line, width=width) for line in lines]

    # Join the wrapped lines back together using newline characters
    wrapped_text = '\n'.join(wrapped_lines)

    return wrapped_text

def process_llm_response(llm_response):
  return wrap_text_preserve_newlines(llm_response)


def time_to_seconds(time_str):
    parts = time_str.split(':')
    hours, minutes, seconds = map(float, parts)
    return int((hours * 3600) + (minutes * 60) + seconds)

# -- Extract seconds from transcription
def add_hyperlink_and_convert_to_seconds(text):
    time_pattern = r'(\d{2}:\d{2}:\d{2}(?:.\d{6})?)'
    
    def get_seconds(match, text):
        if len(match) == 2:
            start_time_str, end_time_str = match[0], match[1]
        else:
            start_time_str = match[0]
            end_time_str   = re.findall(r"Desde el instante {} hasta {}".format(start_time_str, time_pattern), text)[0].split('hasta ')[-1]
            
        start_time_seconds = time_to_seconds(start_time_str)
        end_time_seconds   = time_to_seconds(end_time_str)
        return start_time_str, start_time_seconds, end_time_str, end_time_seconds
    start_time_str, start_time_seconds, end_time_str, end_time_seconds = get_seconds(re.findall(time_pattern, text), text)
    return start_time_str, start_time_seconds, end_time_str, end_time_seconds

# -- Streamlit HTML template
def typewrite(youtube_video_url, i=0):
    youtube_video_url = youtube_video_url.replace("?enablejsapi=1", "")
    margin = "{margin: 0;}"
    html = f"""
        <html>
        <style>
          p {margin}
        </style>
        <body>
          <script src="https://www.youtube.com/player_api"></script>
          <p align="center">
              <iframe id="player_{i}" src="{youtube_video_url}" width="600" height="450"></iframe>
          </p>
        </body>
        </html>
    """
    return html