File size: 4,016 Bytes
175c5c3
f807e7d
e5d2292
b95388b
f807e7d
26f62c4
f807e7d
b95388b
e5d2292
b95388b
f807e7d
26f62c4
f807e7d
 
 
 
 
 
 
 
 
 
 
 
b95388b
f807e7d
a2f42ca
 
 
f807e7d
a2f42ca
26f62c4
c88c1d9
 
 
 
66b707b
 
 
26f62c4
 
e873140
26f62c4
 
b95388b
 
 
 
 
26f62c4
c88c1d9
 
26f62c4
a2f42ca
 
26f62c4
 
e5d2292
 
 
 
26f62c4
175c5c3
26f62c4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b95388b
 
 
 
 
 
 
 
26f62c4
b95388b
 
 
 
 
 
 
 
c88c1d9
b95388b
 
 
 
 
 
 
 
 
26f62c4
 
 
 
 
 
 
 
66b707b
 
 
 
 
 
e5d2292
f807e7d
ea129da
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
import gradio as gr

from utils.chatbot import Chatbot, VideoChatbot
from utils.utils import *

# start of gradio interface
with gr.Blocks() as demo:
    user_chatbot = gr.State(Chatbot())
    test_video_chabot = gr.State(VideoChatbot())

    with gr.Row():
        gr.HTML("Junyi Academy Chatbot")
    with gr.Row(equal_height=True):
        with gr.Column(scale=5):
            with gr.Row():
                chatbot = gr.Chatbot()

            with gr.Row():
                with gr.Column(scale=12):
                    user_input = gr.Textbox(
                        show_label=False,
                        placeholder="Enter text",
                        container=False,
                    )

                with gr.Column(min_width=70, scale=1):
                    clear_btn = gr.Button("清除")
                with gr.Column(min_width=70, scale=1):
                    submit_btn = gr.Button("傳送")

    with gr.Row():
        index_file = gr.File(
            file_count="multiple", file_types=["pdf"], label="Upload PDF file", scale=3
        )
        upload_to_db = gr.CheckboxGroup(
            ["Upload to Database"],
            label="是否上傳至資料庫",
            info="將資料上傳至資料庫時,資料庫會自動建立索引,下次使用時可以直接檢索,預設為僅作這次使用",
            scale=1,
        )

    with gr.Row():
        instruction = gr.Markdown(
            """
            ## 使用說明
            1. 上傳一個或多個 PDF 檔案,系統將自動進行摘要、翻譯等處理後建立知識庫
            2. 在上方輸入欄輸入問題,系統將自動回覆
            3. 可以根據下方的摘要內容來提問
            4. 每次對話會根據第一個問題的內容來檢索所有文件,並挑選最能回答問題的文件來回覆
            5. 要切換檢索的文件,請點選「清除」按鈕後再重新提問

        """,
        )

    with gr.Row():
        describe = gr.Markdown("", visible=True)

    with gr.Row():
        video_text_input = gr.Textbox("", visible=False)
        video_text_output = gr.Textbox("", visible=False)

    # end of gradio interface

    # start of workflow controller

    # defining workflow of user bot interaction
    bot_args = dict(
        fn=bot,
        inputs=user_chatbot,
        outputs=chatbot,
    )

    user_args = dict(
        fn=user,
        inputs=[user_chatbot, user_input],
        outputs=[user_input, chatbot],
        queue=False,
    )

    response = user_input.submit(**user_args).then(**bot_args)

    response.then(lambda: gr.update(interactive=True), None, [user_input], queue=False)

    submit_btn.click(
        **user_args,
    ).then(
        **bot_args
    ).then(lambda: gr.update(interactive=True), None, [user_input], queue=False)

    # defining workflow of clear state
    clear_state_args = dict(
        fn=clear_state,
        inputs=user_chatbot,
        outputs=None,
    )

    clear_btn.click(**clear_state_args)

    # defining workflow of building knowledge base
    send_system_nofification_args = dict(
        fn=send_system_nofification,
        inputs=user_chatbot,
        outputs=chatbot,
    )

    bulid_knowledge_base_args = dict(
        fn=build_knowledge_base,
        inputs=[user_chatbot, index_file, upload_to_db],
        outputs=None,
    )

    change_md_args = dict(
        fn=change_md,
        inputs=[user_chatbot],
        outputs=[describe],
    )

    index_file.upload(**send_system_nofification_args).then(
        lambda: gr.update(interactive=True), None, None, queue=False
    ).then(**bulid_knowledge_base_args).then(**send_system_nofification_args).then(
        lambda: gr.update(interactive=True), None, None, queue=False
    ).then(
        **change_md_args
    )

    video_text_input.submit(
        video_bot,
        [test_video_chabot, video_text_input],
        video_text_output,
        api_name="video_bot",
    )

if __name__ == "__main__":
    demo.launch()