Spaces:
Runtime error
Runtime error
File size: 3,953 Bytes
175c5c3 f807e7d e5d2292 b95388b f807e7d 26f62c4 f807e7d b95388b e5d2292 b95388b f807e7d 26f62c4 f807e7d b95388b f807e7d a2f42ca f807e7d a2f42ca 26f62c4 c88c1d9 26f62c4 e873140 26f62c4 b95388b 26f62c4 c88c1d9 26f62c4 a2f42ca 26f62c4 e5d2292 26f62c4 175c5c3 26f62c4 c88c1d9 26f62c4 b95388b 26f62c4 b95388b c88c1d9 b95388b 26f62c4 e5d2292 f807e7d ea129da |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 |
import gradio as gr
from utils.chatbot import Chatbot, VideoChatbot
from utils.utils import *
# start of gradio interface
with gr.Blocks() as demo:
user_chatbot = gr.State(Chatbot())
test_video_chabot = gr.State(VideoChatbot())
with gr.Row():
gr.HTML("Junyi Academy Chatbot")
with gr.Row(equal_height=True):
with gr.Column(scale=5):
with gr.Row():
chatbot = gr.Chatbot()
with gr.Row():
with gr.Column(scale=12):
user_input = gr.Textbox(
show_label=False,
placeholder="Enter text",
container=False,
)
with gr.Column(min_width=70, scale=1):
clear_btn = gr.Button("清除")
with gr.Column(min_width=70, scale=1):
submit_btn = gr.Button("傳送")
with gr.Row():
index_file = gr.File(
file_count="multiple", file_types=["pdf"], label="Upload PDF file", scale=3
)
upload_to_db = gr.CheckboxGroup(
["Upload to Database"],
label="是否上傳至資料庫", info="將資料上傳至資料庫時,資料庫會自動建立索引,下次使用時可以直接檢索,預設為僅作這次使用", scale=1
)
with gr.Row():
instruction = gr.Markdown(
"""
## 使用說明
1. 上傳一個或多個 PDF 檔案,系統將自動進行摘要、翻譯等處理後建立知識庫
2. 在上方輸入欄輸入問題,系統將自動回覆
3. 可以根據下方的摘要內容來提問
4. 每次對話會根據第一個問題的內容來檢索所有文件,並挑選最能回答問題的文件來回覆
5. 要切換檢索的文件,請點選「清除」按鈕後再重新提問
""",
)
with gr.Row():
describe = gr.Markdown("", visible=True)
with gr.Row():
video_text_input = gr.Textbox("", visible=False)
video_text_output = gr.Textbox("", visible=False)
# end of gradio interface
# start of workflow controller
# defining workflow of user bot interaction
bot_args = dict(
fn=bot,
inputs=user_chatbot,
outputs=chatbot,
)
user_args = dict(
fn=user,
inputs=[user_chatbot, user_input],
outputs=[user_input, chatbot],
queue=False,
)
response = user_input.submit(**user_args).then(**bot_args)
response.then(lambda: gr.update(interactive=True), None, [user_input], queue=False)
submit_btn.click(
**user_args,
).then(
**bot_args
).then(lambda: gr.update(interactive=True), None, [user_input], queue=False)
# defining workflow of clear state
clear_state_args = dict(
fn=clear_state,
inputs=user_chatbot,
outputs=None,
)
clear_btn.click(**clear_state_args)
# defining workflow of building knowledge base
send_system_nofification_args = dict(
fn=send_system_nofification,
inputs=user_chatbot,
outputs=chatbot,
)
bulid_knowledge_base_args = dict(
fn=build_knowledge_base,
inputs=[user_chatbot, index_file, upload_to_db],
outputs=None,
)
change_md_args = dict(
fn=change_md,
inputs=[user_chatbot],
outputs=[describe],
)
index_file.upload(**send_system_nofification_args).then(
lambda: gr.update(interactive=True), None, None, queue=False
).then(**bulid_knowledge_base_args).then(**send_system_nofification_args).then(
lambda: gr.update(interactive=True), None, None, queue=False
).then(
**change_md_args
)
video_text_input.submit(video_bot, [test_video_chabot, video_text_input], video_text_output, api_name="video_bot")
if __name__ == "__main__":
demo.launch()
|